ECE 545—Digital System Design with VHDL
Lecture 1

Digital Logic Review
Lecture Roadmap – Combinational Logic

• Basic Logic Review
 • Basic Gates
 • DeMorgan’s Law

• Combinational Logic Blocks
 • Multiplexers
 • Decoders, Demultiplexers
 • Encoders, Priority Encoders
 • Half Adders, Full Adders

• Multi-Bit Combinational Logic Blocks
 • Multi-bit multiplexers
 • Multi-bit adders
 • Comparators
Lecture Roadmap – Sequential Logic

- Sequential Logic Building Blocks
 - Latches, Flip-Flops
- Sequential Logic Circuits
 - Registers, Shift Registers, Counters
 - Memory (RAM, ROM)
Textbook References

• Combinational Logic Review
 • Chapter 2 Introduction to Logic Circuits (2.1-2.8 only)
 • Chapter 6 Combinational-Circuit Building Blocks (6.1-6.5 only)
 • OR your undergraduate digital logic textbook (chapters on combinational logic)

• Sequential Logic Review
 • Chapter 7 Flip-flops, Registers, Counters, and a Simple Processors (7.3-7.4, 7.8-7.11 only)
 • OR your undergraduate digital logic textbook (chapters on sequential logic)
Basic Logic Review

some slides modified from:
S. Dandamudi, “Fundamentals of Computer Organization and Design”
Basic Concepts

- Simple logic gates
 - AND → 0 if one or more inputs is 0
 - OR → 1 if one or more inputs is 1
 - NOT
 - NAND = AND + NOT
 - 1 if one or more inputs is 0
 - NOR = OR + NOT
 - 0 if one or more input is 1
 - XOR implements exclusive-OR function
- NAND and NOR gates require fewer transistors than AND and OR in standard CMOS
- Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination
Basic Logic Gates

- **AND gate**
 - Logic symbol: \(\overline{A} \land \overline{B} \)
 - Truth table:

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

- **NAND gate**
 - Logic symbol: \(\overline{A} \lor \overline{B} \)
 - Truth table:

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

- **OR gate**
 - Logic symbol: \(A \lor B \)
 - Truth table:

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

- **NOT gate**
 - Logic symbol: \(\overline{A} \)
 - Truth table:

A	F
0	1
1	0

- **NOR gate**
 - Logic symbol: \(A \land B \)
 - Truth table:

A	B	F
0	0	1
0	1	0
1	0	0
1	1	0

- **XOR gate**
 - Logic symbol: \(A \oplus B \)
 - Truth table:

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0
Number of Functions

- Number of functions
 - With N logical variables, we can define 2^N functions
 - Some of them are useful
 - AND, NAND, NOR, XOR, ...
 - Some are not useful:
 - Output is always 1
 - Output is always 0
 - “Number of functions” definition is useful in proving completeness property
Complete Set of Gates

• Complete sets
 • A set of gates is complete
 • if we can implement any logical function using only the type of gates in the set
 • Some example complete sets
 • {AND, OR, NOT} Not a minimal complete set
 • {AND, NOT}
 • {OR, NOT}
 • {NAND}
 • {NOR}
 • Minimal complete set
 • A complete set with no redundant elements.
NAND as a Complete Set

- Proving NAND gate is universal

AND gate

NOT gate

OR gate
Logic Functions

• Logical functions can be expressed in several ways:
 • Truth table
 • Logical expressions
 • Graphical form
 • HDL code

• Example:
 • Majority function
 • Output is one whenever majority of inputs is 1
 • We use 3-input majority function
Logic Functions (cont’d)

Truth table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logical expression form

\[F = A \cdot B + B \cdot C + A \cdot C \]

Graphical schematic form
Boolean Algebra

Boolean identities

<table>
<thead>
<tr>
<th>Name</th>
<th>AND version</th>
<th>OR version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>$x \cdot 1 = x$</td>
<td>$x + 0 = x$</td>
</tr>
<tr>
<td>Complement</td>
<td>$x \cdot x' = 0$</td>
<td>$x + x' = 1$</td>
</tr>
<tr>
<td>Commutative</td>
<td>$x \cdot y = y \cdot x$</td>
<td>$x + y = y + x$</td>
</tr>
<tr>
<td>Distribution</td>
<td>$x \cdot (y+z) = xy+xz$</td>
<td>$x + (y \cdot z) =$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(x+y) \cdot (x+z)$</td>
</tr>
<tr>
<td>Idempotent</td>
<td>$x \cdot x = x$</td>
<td>$x + x = x$</td>
</tr>
<tr>
<td>Null</td>
<td>$x \cdot 0 = 0$</td>
<td>$x + 1 = 1$</td>
</tr>
</tbody>
</table>
Boolean Algebra (cont’d)

- **Boolean identities (cont’d)**

<table>
<thead>
<tr>
<th>Name</th>
<th>AND version</th>
<th>OR version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involution</td>
<td>$x = (x')'$</td>
<td>---</td>
</tr>
<tr>
<td>Absorption</td>
<td>$x \cdot (x+y) = x$</td>
<td>$x + (x \cdot y) = x$</td>
</tr>
<tr>
<td>Associative</td>
<td>$x \cdot (y \cdot z) = (x \cdot y) \cdot z$</td>
<td>$x + (y + z) =$ $(x + y) + z$</td>
</tr>
<tr>
<td>de Morgan</td>
<td>$(x \cdot y)' = x' + y'$</td>
<td>$(x + y)' = x' \cdot y'$</td>
</tr>
</tbody>
</table>

(de Morgan’s law in particular is very useful)
Majority Function Using Other Gates

- Using NAND gates
 - Get an equivalent expression

 \[A \cdot B + C \cdot D = (A \cdot B + C \cdot D)' \]
 - Using de Morgan’s law

 \[A \cdot B + C \cdot D = ((A \cdot B)' \cdot (C \cdot D)')' \]

- Can be generalized
 - Example: Majority function

 \[A \cdot B + B \cdot C + A \cdot C = ((A \cdot B)' \cdot (B \cdot C)' \cdot (A \cdot C)')' \]
Majority Function Using Other Gates (cont'd)

- Majority function
Combinational Logic Building Blocks

Some slides modified from:
S. Dandamudi, “Fundamentals of Computer Organization and Design”
Multiplexers

- multiplexer
 - n binary inputs (binary input = 1-bit input)
 - $\log_2 n$ binary selection inputs
 - 1 binary output
 - Function: one of n inputs is placed onto output
 - Called \textbf{n-to-1} multiplexer
2-to-1 Multiplexer

(a) Graphical symbol

(b) Truth table

(c) Sum-of-products circuit

(d) Circuit with transmission gates

Source: Brown and Vranesic
4-to-1 Multiplexer

(a) Graphic symbol

(b) Truth table

\[
\begin{array}{c|c|c}
 s_1 & s_0 & f \\
 \hline
 0 & 0 & w_0 \\
 0 & 1 & w_1 \\
 1 & 0 & w_2 \\
 1 & 1 & w_3 \\
\end{array}
\]

(c) Circuit

Source: Brown and Vranesic
Decoders

- **Decoder**
 - n binary inputs
 - 2^n binary outputs
 - Function: decode encoded information
 - If enable=1, one output is asserted high, the other outputs are asserted low
 - If enable=0, all outputs asserted low
 - Often, enable pin is not needed (i.e. the decoder is always enabled)
 - Called **n-to-2^n decoder**
 - Can consider n binary inputs as a single n-bit input
 - Can consider 2^n binary outputs as a single 2^n-bit output
 - Decoders are often used for RAM/ROM addressing
2-to-4 Decoder

<table>
<thead>
<tr>
<th>En</th>
<th>w_1</th>
<th>w_0</th>
<th>y_3</th>
<th>y_2</th>
<th>y_1</th>
<th>y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Truth table

(b) Graphical symbol

(c) Logic circuit

Source: Brown and Vranesic
Demultiplexers

- **Demultiplexer**
 - 1 binary input
 - n binary outputs
 - $\log_2 n$ binary selection inputs
 - Function: places input onto one of n outputs, with the remaining outputs asserted low
 - Called 1-to-n demultiplexer
- **Closely related to decoder**
 - Can build 1-to-n demultiplexer from $\log_2 n$-to-n decoder by using the decoder’s enable signal as the demultiplexer's input signal, and using decoder's input signals as the demultiplexer's selection input signals.
1-to-4 Demultiplexer
Encoders

- Encoder
 - 2^n binary inputs
 - n binary outputs
 - Function: encodes information into an n-bit code
 - Called 2^n-to-n encoder
 - Can consider 2^n binary inputs as a single 2^n-bit input
 - Can consider n binary output as a single n-bit output
- Encoders only work when exactly one binary input is equal to 1
4-to-2 Encoder

<table>
<thead>
<tr>
<th>w_3</th>
<th>w_2</th>
<th>w_1</th>
<th>w_0</th>
<th>y_1</th>
<th>y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Truth table

(b) Circuit
Priority Encoders

- Priority Encoder
 - 2^n binary inputs
 - n binary outputs
 - 1 binary "valid" output
 - Function: encodes information into an n-bit code based on priority of inputs
 - Called 2^n-to-n priority encoder

- Priority encoder allows for multiple inputs to have a value of '1', as it encodes the input with the highest priority (MSB = highest priority, LSB = lowest priority)
 - "valid" output indicates when priority encoder output is valid
 - Priority encoder is more common than an encoder
4-to-2 Priority Encoder

<table>
<thead>
<tr>
<th>(w_3)</th>
<th>(w_2)</th>
<th>(w_1)</th>
<th>(w_0)</th>
<th>(y_1)</th>
<th>(y_0)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Single-Bit Adders

• Half-adder
 • Adds two binary (i.e. 1-bit) inputs A and B
 • Produces a sum and carryout
 • Problem: Cannot use it alone to build larger adders

• Full-adder
 • Adds three binary (i.e. 1-bit) inputs A, B, and carryin
 • Like half-adder, produces a sum and carryout
 • Allows building M-bit adders ($M > 1$)
 • Simple technique
 • Connect C_{out} of one adder to C_{in} of the next
 • These are called ripple-carry adders
 • Shown in next section
Half-Adder

\[x + y = (c \ s)_2 \]

\[
\begin{array}{c|c|c|c|c|c|}
 x & y & c & s \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 0 & 1 \\
 1 & 1 & 1 & 0 \\
\end{array}
\]

(a) AND/XOR half-adder.
Full-Adder

\[
x + y + c_{in} = (c_{out} \cdot s)_2
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>c_{in}</th>
<th>c_{out}</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\text{FA}
\]

\[
x \quad y \quad c_{in}
\]

\[
c_{out} \quad s
\]
Multi-Bit Combinational Logic Building Blocks

\[\sum_{i=1}^{2n}(m_{2i-1} + k_{2i-1})(m_{2i} + k_{2i})x^{i-1} \]
Multi-bit 4-to-1 Multiplexer

- When drawing schematics, can draw **multi-bit** multiplexers

- Example: 4-to-1 (8 bit) multiplexer
 - 4 inputs (each 8 bits)
 - 1 output (8 bits)
 - 2 selection bits

- Can also have multi-bit 2-to-1 muxes, 16-to-1 muxes, etc.
A 4-to-1 (8-bit) multiplexer is composed of eight 4-to-1 (1-bit) multiplexers.
16-bit Unsigned Adder
Multi-Bit Ripple-Carry Adder

A 16-bit ripple-carry adder is composed of 16 (1-bit) full adders
Inputs: 16-bit A, 16-bit B, 1-bit carryin (set to zero in the figure below)
Outputs: 16-bit sum R, 1-bit overflow
Other multi-bit adder structures can be studied in ECE 645—Computer Arithmetic

Called a ripple-carry adder because carry ripples from one full-adder to the next.
Critical path is 16 full-adders.
Comparator

- Used two compare two M-bit numbers and produce a flag (M > 1)
 - Inputs: M-bit input A, M-bit input B
 - Output: 1-bit output flag
 - 1 indicates condition is met
 - 0 indicates condition is not met
 - Can compare: >, >=, <, <=, =, etc.

A > B?

1 if A > B
0 if A <= B
Example: 4-bit comparator (A = B)

A = B?

1 if A = B
0 if A != B

A = B
Tri-state Buffer

(a) A tri-state buffer

<table>
<thead>
<tr>
<th>e</th>
<th>x</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Truth table

(b) Equivalent circuit
Four types of Tri-state Buffers

(a)
\[x \rightarrow e \rightarrow f \]

(b)
\[x \rightarrow e \rightarrow f \]

(c)
\[x \rightarrow e \rightarrow f \]

(d)
\[x \rightarrow e \rightarrow f \]
Sequential Logic Building Blocks

some slides modified from:
S. Dandamudi, “Fundamentals of Computer Organization and Design”
Introduction to Sequential Logic

• Output depends on current as well as past inputs
 • Depends on the history
 • Have “memory” property

• Sequential circuit consists of
 • Combinational circuit
 • Feedback circuit

• Past input is encoded into a set of state variables
 • Uses feedback (to feed the state variables)
 • Simple feedback
 • Uses flip flops
Main components of a typical synchronous sequential circuit
(synchronous = uses a clock to keep circuits in lock step)
State-Holding Memory Elements

- Latch versus Flip Flop
 - Latches are level-sensitive: whenever clock is high, latch is transparent
 - Flip-flops are edge-sensitive: data passes through (i.e. data is sampled) only on a rising (or falling) edge of the clock
 - Latches cheaper to implement than flip-flops
 - Flip-flops are easier to design with than latches
- In this course, primarily use D flip-flops
D Latch vs. D Flip-Flop

Latch transparent when clock is high

“Samples” D on rising edge of clock
D Flip-Flop with Asynchronous Preset and Clear

- Bubble on the symbol means “active-low”
 - When preset = 0, preset Q to 1
 - When preset = 1, do nothing
 - When clear = 0, clear Q to 0
 - When clear = 1, do nothing
- “Preset” and “Clear” also known as “Set” and “Reset” respectively
- In this circuit, preset and clear are asynchronous
 - Q changes immediately when preset or clear are active, regardless of clock
D Flip-Flop with Synchronous Clear

- Asynchronous active-low clear: Q immediately clears to 0
- Synchronous active-low clear: Q clears to 0 on rising-edge of clock
Sequential Logic Circuits

some slides modified from:
S. Dandamudi, “Fundamentals of Computer Organization and Design”
Register

- In typical nomenclature, a register is a name for a collection of flip-flops used to hold a bus (i.e. std_logic_vector)
Shift Register

(a) Circuit

(b) A sample sequence

<table>
<thead>
<tr>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
<th>t_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sin | Q | Q | Q | Q |

Sin | Q1 | Q2 | Q3 | Q4 = Q

Sin | Q1 | Q2 | Q3 | Q4 = Q

Sin | Q1 | Q2 | Q3 | Q4 = Q
Parallel Access Shift Register

- Clock
- Serial_in
- Parallel_in
- Shift/load

SHIFT REGISTER

Parallel output

Q₃ → Q₂ → Q₁ → Q₀

Serial input
Shift/Load
Parallel input
Clock
Synchronous Up Counter

- Enable (synchronous): when high enables the counter, when low counter holds its value
- Load (synchronous): when load = 1, load the desired value into the counter
- Output carry: indicates when the counter “rolls over”
- D3 downto D0, Q3 downto Q0 is how to interpret MSB to LSB
Memories

some slides modified from:
S. Dandamudi, “Fundamentals of Computer Organization and Design”
Read Only Memory (ROM)

- Addressable read-only memory
- Can be synchronous (with clock) or asynchronous (no clock)
- Read signal is optional (can be always on)
Read-Only Memory (ROM)
Random Access Memory (RAM)

- More efficient than registers for storing large amounts of data
- Can read and write to RAM
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)
- SRAM dimensions are:
 - \((\text{number of words}) \times (\text{bits per word})\) SRAM
- Address is \(m\) bits, data is \(n\) bits
 - \(2^m \times n\)-bit RAM
- Example: address is 5 bits, data is 8 bits
 - \(32 \times 8\)-bit RAM
- Write
 - Data_in and address are stable
 - Assert write signal (then de-assert)
- Read (optional)
 - Address is stable
 - Assert read signal
 - Data_out is valid
Random Access Memory (RAM)