Lecture Roadmap – Combinational Logic

- Basic Logic Review
 - Basic Gates
 - DeMorgan’s Law
- Combinational Logic Blocks
 - Multiplexers
 - Decoders, Demultiplexers
 - Encoders, Priority Encoders
 - Half Adders, Full Adders
- Multi-Bit Combinational Logic Blocks
 - Multi-bit multiplexers
 - Multi-bit adders
 - Comparators

Lecture Roadmap – Sequential Logic

- Sequential Logic Building Blocks
 - Latches, Flip-Flops
- Sequential Logic Circuits
 - Registers, Shift Registers, Counters
 - Memory (RAM, ROM)

Textbook References

- Combinational Logic Review
 - Chapter 2 Introduction to Logic Circuits (2.1-2.8 only)
 - Chapter 6 Combinational-Circuit Building Blocks (6.1-6.5 only)
 - OR your undergraduate digital logic textbook (chapters on combinational logic)
- Sequential Logic Review
 - Chapter 7 Flip-flops, Registers, Counters, and a Simple Processors (7.3-7.4, 7.8-7.11 only)
 - OR your undergraduate digital logic textbook (chapters on sequential logic)

Basic Concepts

- Simple logic gates
 - \(\text{AND} \rightarrow 0 \) if one or more inputs is 0
 - \(\text{OR} \rightarrow 1 \) if one or more inputs is 1
 - \(\text{NOT} \)
 - \(\text{NAND} = \text{AND} + \text{NOT} \)
 - 1 if one or more inputs is 0
 - \(\text{NOR} = \text{OR} + \text{NOT} \)
 - 0 if one or more input is 1
 - XOR implements exclusive-OR function
 - NAND and NOR gates require fewer transistors than AND and OR in standard CMOS
- Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination
Basic Logic Gates

<table>
<thead>
<tr>
<th>Logic symbol</th>
<th>Truth table</th>
<th>Logic symbol</th>
<th>Truth table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A B F</td>
<td>A</td>
<td>A B F</td>
</tr>
<tr>
<td></td>
<td>0 0 0</td>
<td>0</td>
<td>0 0 1</td>
</tr>
<tr>
<td></td>
<td>0 1 0</td>
<td>1</td>
<td>1 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 1</td>
<td>1</td>
<td>0 0 1</td>
</tr>
<tr>
<td></td>
<td>0 0 1</td>
<td>1</td>
<td>1 0 0</td>
</tr>
<tr>
<td></td>
<td>1 1 1</td>
<td>0</td>
<td>0 1 0</td>
</tr>
</tbody>
</table>

AND gate

OR gate

NOR gate

NOT gate

Number of Functions

- **Number of functions**
 - With N logical variables, we can define 2^N functions
 - Some of them are useful
 - AND, NAND, NOR, XOR, …
 - Some are not useful:
 - Output is always 1
 - Output is always 0
 - “Number of functions” definition is useful in proving completeness property

Complete Set of Gates

- **Complete sets**
 - A set of gates is complete
 - if we can implement any logical function using only the type of gates in the set
 - Some example complete sets
 - {AND, OR, NOT} Not a minimal complete set
 - {AND, NOT}
 - {OR, NOT}
 - {NAND}
 - {NOR}
 - Minimal complete set
 - A complete set with no redundant elements.

NAND as a Complete Set

- **Proving NAND gate is universal**

<table>
<thead>
<tr>
<th>Truth table</th>
<th>Logical expression form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C F</td>
<td>$F = A B + B C + A C$</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Logic Functions

- Logical functions can be expressed in several ways:
 - Truth table
 - Logical expressions
 - Graphical form
 - HDL code
- Example:
 - Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function
<table>
<thead>
<tr>
<th>Name</th>
<th>AND version</th>
<th>OR version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>$x \cdot 1 = x$</td>
<td>$x + 0 = x$</td>
</tr>
<tr>
<td>Complement</td>
<td>$x \cdot x' = 0$</td>
<td>$x + x' = 1$</td>
</tr>
<tr>
<td>Commutative</td>
<td>$x \cdot y = y \cdot x$</td>
<td>$x + y = y + x$</td>
</tr>
<tr>
<td>Distribution</td>
<td>$x \cdot (y + z) = x \cdot y + x \cdot z$</td>
<td>$x + (y \cdot z) = (x + y) \cdot (x + z)$</td>
</tr>
<tr>
<td>Idempotent</td>
<td>$xx = x$</td>
<td>$x + x = x$</td>
</tr>
<tr>
<td>Null</td>
<td>$x \cdot 0 = 0$</td>
<td>$x + 1 = 1$</td>
</tr>
</tbody>
</table>

Boolean Algebra (cont’d)

- Boolean identities (cont’d)

<table>
<thead>
<tr>
<th>Name</th>
<th>AND version</th>
<th>OR version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involution</td>
<td>$x = (x')'$</td>
<td>---</td>
</tr>
<tr>
<td>Absorption</td>
<td>$x \cdot (x+y) = x$</td>
<td>$x + (x \cdot y) = x$</td>
</tr>
<tr>
<td>Associative</td>
<td>$x \cdot (y \cdot z) = (x \cdot y) \cdot z$</td>
<td>$x + (y + z) = (x + y) + z$</td>
</tr>
<tr>
<td>de Morgan</td>
<td>$(x \cdot y)' = x' + y'$</td>
<td>$(x + y)' = x' \cdot y'$ (de Morgan’s law in particular is very useful)</td>
</tr>
</tbody>
</table>

Majority Function Using Other Gates

- Using NAND gates
 - Get an equivalent expression
 $$A \cdot B + C \cdot D = (A \cdot B + C \cdot D)''$$
 - Using de Morgan’s law
 $$A \cdot B + C \cdot D = \left((A \cdot B)' \cdot (C \cdot D)'
ight)'$$
- Can be generalized
 - Example: Majority function
 $$A \cdot B \cdot C + A \cdot C = (A \cdot B)' \cdot (B \cdot C)' \cdot (A \cdot C)'$$

Majority Function Using Other Gates (cont’d)

- Majority function

Combinational Logic Building Blocks

- Multiplexers
 - n binary inputs (binary input = 1-bit input)
 - log$_n$ binary selection inputs
 - 1 binary output
 - Function: one of n inputs is placed onto output
 - Called n-to-1 multiplexer
Decoders

- **Decoder**
 - n binary inputs
 - 2^n binary outputs
 - Function: decode encoded information
 - If enable=1, one output is asserted high, the other outputs are asserted low
 - If enable=0, all outputs asserted low
 - Often, enable pin is not needed (i.e. the decoder is always enabled)
 - Called n-to-2^n decoder
 - Can consider n binary inputs as a single n-bit input
 - Can consider 2^n binary outputs as a single 2^n-bit output
 - Decoders are often used for RAM/ROM addressing

Demultiplexers

- **Demultiplexer**
 - 1 binary input
 - n binary outputs
 - n binary selection inputs
 - Function: places input onto one of n outputs, with the remaining outputs asserted low
 - Called 1-to-n demultiplexer
 - Closely related to decoder
 - Can build 1-to-n demultiplexer from log_2(n)-to-n decoder by using the decoder's enable signal as the demultiplexer's input signal, and using decoder's input signals as the demultiplexer's selection input signals.
Encoders

- Encoder
 - 2^n binary inputs
 - n binary outputs
 - Function: encodes information into an n-bit code
 - Called 2^n-to-n encoder
 - Can consider 2^n binary inputs as a single 2^n-bit input
 - Can consider n binary output as a single n-bit output
 - Encoders only work when exactly one binary input is equal to 1

Priority Encoders

- Priority Encoder
 - 2^n binary inputs
 - n binary outputs
 - 1 binary "valid" output
 - Function: encodes information into an n-bit code based on priority of inputs
 - Called 2^n-to-n priority encoder
 - Priority encoder allows for multiple inputs to have a value of '1', as it encodes the input with the highest priority (MSB = highest priority, LSB = lowest priority)
 - "valid" output indicates when priority encoder output is valid
 - Priority encoder is more common than an encoder

Single-Bit Adders

- Half-adder
 - Adds two binary (i.e. 1-bit) inputs A and B
 - Produces a sum and carryout
 - Problem: Cannot use it alone to build larger adders
- Full-adder
 - Adds three binary (i.e. 1-bit) inputs A, B, and carryin
 - Like half-adder, produces a sum and carryout
 - Allows building M-bit adders ($M > 1$)
 - Simple technique
 - Connect C_{in} of one adder to C_{in} of the next
 - These are called ripple-carry adders
 - Shown in next section

4-to-2 Encoder

- Truth table
 - w_3, w_2, w_1, w_0
 - y_0, y_1

- Circuit

4-to-2 Priority Encoder

- Truth table
 - w_3, w_2, w_1, w_0
 - y_0, y_1, z

- Circuit

Half-Adder

- Circuit
 - x, y, c, s
 - $x + y' (c + s)$

- Circuit
 - x, y, c, s
 - x, y', s
Full-Adder

\[x + y + c_{in} = s + 2c_{out} \]

\[
\begin{array}{cccc|c}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Multi-bit 4-to-1 Multiplexer

- When drawing schematics, can draw multi-bit multiplexers
- Example: 4-to-1 (8 bit) multiplexer
 - 4 inputs (each 8 bits)
 - 1 output (8 bits)
 - 2 selection bits
- Can also have multi-bit 2-to-1 muxes, 16-to-1 muxes, etc.

4-to-1 (8-bit) Multiplexer

A 4-to-1 (8-bit) multiplexer is composed of eight 4-to-1 (1-bit) multiplexers

16-bit Unsigned Adder

A 16-bit ripple-carry adder is composed of 16 (1-bit) full adders

- Inputs: 16-bit A, 16-bit B, 1-bit carryin (set to zero in the figure below)
- Outputs: 16-bit sum R, 1-bit overflow
Other multi-bit adder structures can be studied in ECE 645—Computer Arithmetic

Multi-Bit Combinational Logic Building Blocks

Multi-Bit Ripple-Carry Adder

Called a ripple-carry adder because carry ripples from one full-adder to the next.
Critical path is 16 full-adders.
Comparator

- Used to compare two M-bit numbers and produce a flag (M > 1)
- Inputs: M-bit input A, M-bit input B
- Output: 1-bit output flag
 - 1 indicates condition is met
 - 0 indicates condition is not met
- Can compare: >, ≥, <, ≤, =, etc.

\[
\begin{array}{ccc}
A & B & A > B? \\
M & M & 1 \text{ if } A > B \\
0 \text{ if } A \leq B
\end{array}
\]

Example: 4-bit comparator (A = B)

\[
\begin{array}{c}
A \\
B \\
B_3 \\
A_3 \\
B_2 \\
A_2 \\
B_1 \\
A_1 \\
B_0 \\
A_0
\end{array}
\]

\[
\begin{array}{c}
A = B? \\
A \\
B
\end{array}
\]

Tri-state Buffer

- (a) A tri-state buffer
- (b) Equivalent circuit
- (c) Truth table

\|
x	f	e
0	0	0
0	1	Z
1	0	Z
1	1	1

Four types of Tri-state Buffers

- (a)
- (b)
- (c)
- (d)

Introduction to Sequential Logic

- Output depends on current as well as past inputs
- Depends on the history
- Have “memory” property
- Sequential circuit consists of
 - Combinational circuit
 - Feedback circuit
 - Past input is encoded into a set of state variables
 - Uses feedback (to feed the state variables)
 - Simple feedback
 - Uses flip flops

Sequential Logic Building Blocks
Introduction (cont’d)

Main components of a typical synchronous sequential circuit (synchronous = uses a clock to keep circuits in lock step)

- **COMBINATIONAL LOGIC**
- **INPUT**
- **PRESENT STATE S(t)**
- **CLOCK**
- **STATE-HOLDING ELEMENTS (i.e. FLIP-FLOPS)**
- **OUTPUT**
- **NEXT STATE S(t+1)**

State-Holding Memory Elements

- **Latch versus Flip Flop**
 - Latches are level-sensitive: whenever clock is high, latch is transparent
 - Flip-flops are edge-sensitive: data passes through (i.e. data is sampled) only on a rising (or falling) edge of the clock
 - Latches cheaper to implement than flip-flops
 - Flip-flops are easier to design with than latches
 - In this course, primarily use D flip-flops

D Latch vs. D Flip-Flop

- **Latch transparent when clock is high**
- **"Samples" D on rising edge of clock**

D Flip-Flop with Asynchronous Preset and Clear

- **Bubble on the symbol means "active-low"**
 - When preset = 0, preset Q to 1
 - When preset = 1, do nothing
 - When clear = 0, clear Q to 0
 - When clear = 1, do nothing
 - "Preset" and "Clear" also known as "Set" and "Reset" respectively
 - In this circuit, preset and clear are asynchronous
 - Q changes immediately when preset or clear are active, regardless of clock

D Flip-Flop with Synchronous Clear

- Asynchronous active-low clear: Q immediately clears to 0
- Synchronous active-low clear: Q clears to 0 on rising-edge of clock

Sequential Logic Circuits

Some slides modified from:
- S. Dandamudi, "Fundamentals of Computer Organization and Design"
In typical nomenclature, a register is a name for a collection of flip-flops used to hold a bus (i.e. std_logic_vector).

Register

- In typical nomenclature, a register is a name for a collection of flip-flops used to hold a bus (i.e. std_logic_vector).

Shift Register

- A sample sequence

Parallel Access Shift Register

- A circuit

Synchronous Up Counter

- Enable (synchronous): when high enables the counter, when low counter holds its value.
- Load (synchronous): when load = 1, load the desired value into the counter.
- Output carry: indicates when the counter “rolls over”.
- D3 downto D0, Q3 downto Q0 is how to interpret MSB to LSB.

Read Only Memory (ROM)

- Addressable read-only memory
- Can be synchronous (with clock) or asynchronous (no clock)
- Read signal is optional (can be always on)
Read-Only Memory (ROM)

- More efficient than registers for storing large amounts of data
- Can read and write to RAM
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)
- SRAM dimensions are:
 - (number of words) x (bits per word)
 - SRAM
 - Address is m bits, data is n bits
 - 2^m x n-bit RAM
 - Example: address is 5 bits, data is 8 bits
 - 32 x 8-bit RAM

Random Access Memory (RAM)

- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)
- Address is m bits, data is n bits
- 2^m x n-bit RAM
- Example: address is 5 bits, data is 8 bits
 - 32 x 8-bit RAM

Write
- Data_in and address are stable
- Assert write signal (then de-assert)

Read (optional)
- Address is stable
- Assert read signal
- Data_out is valid