Lecture 2A
RTL Design Methodology
Transition from Pseudocode & Interface to a Corresponding Block Diagram
Structure of a Typical Digital System

Datapath (Execution Unit)

Data Inputs

Control & Status Inputs

Control & Status Outputs

Controller (Control Unit)

Data Outputs

Control Signals

Status Signals
Hardware Design with RTL VHDL

- Pseudocode
- Interface
- Datapath
 - Block diagram
- Controller
 - ASM chart

VHDL code
Steps of the Design Process

1. Text description
2. Interface
3. Pseudocode
4. Block diagram of the Datapath
5. Interface divided into Datapath and Controller
6. ASM chart of the Controller
7. RTL VHDL code of the Datapath, Controller, and Top-Level Unit
8. Testbench for the Datapath, Controller, and Top-Level Unit
9. Functional simulation and debugging
10. Synthesis and post-synthesis simulation
11. Implementation and timing simulation
12. Experimental testing using FPGA board
Steps of the Design Process
Introduced in Class Today

1. Text description
2. Interface
3. Pseudocode
4. **Block diagram of the Datapath**
5. **Interface divided into Datapath and Controller**
6. ASM chart of the Controller
7. RTL VHDL code of the Datapath, Controller, and Top-level Unit
8. Testbench for the Datapath, Controller, and Top-Level Unit
9. Functional simulation and debugging
10. Synthesis and post-synthesis simulation
11. Implementation and timing simulation
12. Experimental testing using FPGA board
Class Exercise 1
STATISTICS
Pseudocode

no_1 = no_2 = no_3 = sum = 0
for i=0 to k-1 do
 sum = sum + din
 if din > no_1 then
 no_3 = no_2
 no_2 = no_1
 no_1 = din
 elseif (din > no_2) then
 no_3 = no_2
 no_2 = din
 elseif (din > no_3) then
 no_3 = din
 end if
end for
avr = sum / k
Circuit Interface
Interface Table

<table>
<thead>
<tr>
<th>Port</th>
<th>Width</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk</td>
<td>1</td>
<td>System clock.</td>
</tr>
<tr>
<td>reset</td>
<td>1</td>
<td>System reset.</td>
</tr>
<tr>
<td>din</td>
<td>n</td>
<td>Input Data.</td>
</tr>
<tr>
<td>go</td>
<td>1</td>
<td>Control signal indicating that the first input is ready. Active for one clock cycle.</td>
</tr>
<tr>
<td>done</td>
<td>1</td>
<td>Signal set to high after the output is ready.</td>
</tr>
<tr>
<td>dout</td>
<td>n</td>
<td>Output dependent on the dout_mode input.</td>
</tr>
<tr>
<td>dout_mode</td>
<td>2</td>
<td>Control signal determining value available at the output. 00: avr, 01: no_1, 10: no_2, 11: no_3.</td>
</tr>
</tbody>
</table>
STATISTICS: Solutions
Block diagram of the Datapath
Interface with the division into the Datapath and the Controller

Datapath

Controller

din dout_mode clk reset go

Datapath

dout

din dout_mode clk reset go

Datapath

dout

Datapath

din dout_mode clk reset go

Datapath

dout

Datapath

dout