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FPGA Multipliers 



Notation 

Y    Multiplicand        Yk-1Yk-2 . . . Y1 Y0 
 
X    Multiplier         xm-1xm-2 . . . x1 x0 
 
P    Product (Y ⋅ X )     pm+k-1pm+k-2 . . . p2 p1 p0 

If multiplicand and multiplier are of different sizes,  
usually multiplier has the smaller size 



Xilinx FPGA Implementation 
Equations 

Z =   (2xm-1+xm-2) ⋅ Y ⋅ 2m-2 + … + (2xi+1+xi) ⋅ Y ⋅ 2i + … + 
                 +(2x3+x2) ⋅ Y ⋅ 22 + (2x1+x0) ⋅ Y ⋅ 20 
 
 

             (2xi+1+xi) ⋅ Y = pi(k+1)pikpi(k-1)…pi2pi1pi0 
 
 
                    pij = xi⋅yj xor xi+1⋅yj-1 xor cj 
 
       cj+1 = (xi⋅yj)(xi+1⋅yj-1) + (xi⋅yj)⋅cj + (xi+1⋅yj-1)⋅cj  

c0 = c1 = 0 



Modified Basic Cell 
Xilinx FPGA Implementation 
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Modified Basic Cell 
Xilinx FPGA Implementation 

LUT:   xi⋅yj xor xi+1⋅yj-1  

pij = xi⋅yj xor xi+1⋅yj-1 xor cj 
 

cj+1 = (xi⋅yj)(xi+1⋅yj-1) + (xi⋅yj)⋅cj + (xi+1⋅yj-1)⋅cj  
 



Xilinx FPGA 
Multiplier 



Radix 2 
Sequential Multipliers 



Notation 

a    Multiplicand        ak-1ak-2 . . . a1 a0 
 
x    Multiplier         xk-1xk-2 . . . x1 x0 
 
p    Product (a ⋅ x)     p2k-1p2k-2 . . . p2 p1 p0 

If multiplicand and multiplier are of different sizes,  
usually multiplier has the smaller size 



Multiplication  of  two  4-bit  unsigned   
binary numbers  in  dot  notation 

Partial Product 0 

Partial Product 1 

Partial Product 2 

Partial Product 3 

Number of partial products = number of bits in multiplier x 
Bit-width of each partial product = bit-width of multiplicand a 



Basic Multiplication Equations 

x = ∑ xi 
⋅ 2i 

i=0 

k-1 
p = a ⋅ x  

p = a ⋅ x = ∑ a ⋅ xi 
⋅ 2i =  

 
   = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1  

i=0 

k-1 



Shift/Add Algorithm 
Right-shift version 



Shift/Add Algorithms 
Right-shift algorithm 

p = a ⋅ x = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1   

= (...((0 + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =  

k  times 

= 

p(0) = 0 

p = p(k) 

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1 



Sequential shift-and-add multiplier for 
right-shift algorithm 



Right-shift 
multiplication 

algorithm:  
Example 



Area optimization for the sequential shift-and-add  
multiplier with the right-shift algorithm 



Shift/Add Algorithms 
Right-shift algorithm: multiply-add 

= (...((y2k + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =  

k  times 

p(0) = y2k 

p = p(k) 

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1 

= y + x0a20 + x1a21 + x2a22 + … + xk-1a2k-1 = y + a ⋅ x 



Signed Multiplication 
•  Previous sequential multipliers are for unsigned multiplication 
•  For signed multiplication: 

–  assume sign-extended operation for p(j) + xja 
–   if 2's complement multiplier is POSITIVE 

right-shift sequential algorithms (shift-add) will work directly 
–  if 2's complement multiplier is NEGATIVE than we must use 

"negative weight” for xk-1 and subtract xk-1a in the last cycle 
•  Slight increase in area due to control and one-bit sign extension on 

inputs of adder 
–  Unsigned: k bit number + k bit number à k+1 bit number 
–  Signed: k+1 bit sign extended number + k+1 bit sign extended 

number à k+1 bit number 
  



Sequential   
multiplication   

of  2’s-complement 
numbers   

with  right  shifts 
(positive  multiplier) 



Sequential   
multiplication   

of  2’s-complement 
numbers   

with  right  shifts 
(negative  multiplier) 



Shift/Add Algorithm 
Left-shift version 



Shift/Add Algorithms 
Left-shift algorithm 

p = a ⋅ x = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1   

= (...((0⋅2 + xk-1a)⋅2 + xk-2a)⋅2 + ... + x1a)⋅2 + x0a=  

k  times 

= 

p(0) = 0 

p = p(k) 

p(j+1) = (p(j) ⋅2 + xk-1-ja) j=0..k-1 



Sequential shift-and-add multiplier for 
left-shift algorithm 

Left shifts are not as efficient for 
two's complement because must 
sign extend multiplicand by k bits  



Left-shift 
multiplication 

algorithm:  
Example 



p(0) = y2-k 

p = p(k) 

p(j+1) = (p(j) ⋅2 + xk-(j+1)a) j=0..k-1 

Shift/Add Algorithms 
Left-shift algorithm: multiply-add 

= (...((y2-k ⋅2 + xk-1a)⋅2 + xk-2a)⋅2 + ... + x1a)⋅2 + x0a =  

k  times 

= y + xk-1a2k-1 + xk-2a2k-2 + … + x1a21 + x0a = y + a ⋅ x  



Shift/Add Algorithm 
Right-shift version 

with Carry-Save Adder 



Sequential shift-and-add multiplier 
with a carry save adder 


