
FPGA Multipliers

Radix 2 Sequential Multipliers

Lecture 8

Required Reading

Chapter 9, Basic Multiplication Scheme
Chapter 10, High-Radix Multipliers
Chapter 12.3, Bit-Serial Multipliers
Chapter 12.4, Modular Multipliers

Behrooz Parhami,
Computer Arithmetic: Algorithms and Hardware Design

FPGA Multipliers

Notation

Y Multiplicand Yk-1Yk-2 . . . Y1 Y0

X Multiplier xm-1xm-2 . . . x1 x0

P Product (Y ⋅ X) pm+k-1pm+k-2 . . . p2 p1 p0

If multiplicand and multiplier are of different sizes,
usually multiplier has the smaller size

Xilinx FPGA Implementation
Equations

Z = (2xm-1+xm-2) ⋅ Y ⋅ 2m-2 + … + (2xi+1+xi) ⋅ Y ⋅ 2i + … +
 +(2x3+x2) ⋅ Y ⋅ 22 + (2x1+x0) ⋅ Y ⋅ 20

 (2xi+1+xi) ⋅ Y = pi(k+1)pikpi(k-1)…pi2pi1pi0

 pij = xi⋅yj xor xi+1⋅yj-1 xor cj

 cj+1 = (xi⋅yj)(xi+1⋅yj-1) + (xi⋅yj)⋅cj + (xi+1⋅yj-1)⋅cj

c0 = c1 = 0

Modified Basic Cell
Xilinx FPGA Implementation

cj+1

cj

pij
FA

yj

xi xi+1

yj-1

LUT 0 1

xi
yi

cj+1

cj

pij

xi+1
yi-1

Modified Basic Cell
Xilinx FPGA Implementation

LUT: xi⋅yj xor xi+1⋅yj-1

pij = xi⋅yj xor xi+1⋅yj-1 xor cj

cj+1 = (xi⋅yj)(xi+1⋅yj-1) + (xi⋅yj)⋅cj + (xi+1⋅yj-1)⋅cj

Xilinx FPGA
Multiplier

Radix 2
Sequential Multipliers

Notation

a Multiplicand ak-1ak-2 . . . a1 a0

x Multiplier xk-1xk-2 . . . x1 x0

p Product (a ⋅ x) p2k-1p2k-2 . . . p2 p1 p0

If multiplicand and multiplier are of different sizes,
usually multiplier has the smaller size

Multiplication of two 4-bit unsigned
binary numbers in dot notation

Partial Product 0

Partial Product 1

Partial Product 2

Partial Product 3

Number of partial products = number of bits in multiplier x
Bit-width of each partial product = bit-width of multiplicand a

Basic Multiplication Equations

x = ∑ xi
⋅ 2i

i=0

k-1
p = a ⋅ x

p = a ⋅ x = ∑ a ⋅ xi
⋅ 2i =

 = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

i=0

k-1

Shift/Add Algorithm
Right-shift version

Shift/Add Algorithms
Right-shift algorithm

p = a ⋅ x = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

= (...((0 + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =

k times

=

p(0) = 0

p = p(k)

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1

Sequential shift-and-add multiplier for
right-shift algorithm

Right-shift
multiplication

algorithm:
Example

Area optimization for the sequential shift-and-add
multiplier with the right-shift algorithm

Shift/Add Algorithms
Right-shift algorithm: multiply-add

= (...((y2k + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =

k times

p(0) = y2k

p = p(k)

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1

= y + x0a20 + x1a21 + x2a22 + … + xk-1a2k-1 = y + a ⋅ x

Signed Multiplication
•  Previous sequential multipliers are for unsigned multiplication
•  For signed multiplication:

–  assume sign-extended operation for p(j) + xja
–  if 2's complement multiplier is POSITIVE

right-shift sequential algorithms (shift-add) will work directly
–  if 2's complement multiplier is NEGATIVE than we must use

"negative weight” for xk-1 and subtract xk-1a in the last cycle
•  Slight increase in area due to control and one-bit sign extension on

inputs of adder
–  Unsigned: k bit number + k bit number à k+1 bit number
–  Signed: k+1 bit sign extended number + k+1 bit sign extended

number à k+1 bit number

Sequential
multiplication

of 2’s-complement
numbers

with right shifts
(positive multiplier)

Sequential
multiplication

of 2’s-complement
numbers

with right shifts
(negative multiplier)

Shift/Add Algorithm
Left-shift version

Shift/Add Algorithms
Left-shift algorithm

p = a ⋅ x = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

= (...((0⋅2 + xk-1a)⋅2 + xk-2a)⋅2 + ... + x1a)⋅2 + x0a=

k times

=

p(0) = 0

p = p(k)

p(j+1) = (p(j) ⋅2 + xk-1-ja) j=0..k-1

Sequential shift-and-add multiplier for
left-shift algorithm

Left shifts are not as efficient for
two's complement because must
sign extend multiplicand by k bits

Left-shift
multiplication

algorithm:
Example

p(0) = y2-k

p = p(k)

p(j+1) = (p(j) ⋅2 + xk-(j+1)a) j=0..k-1

Shift/Add Algorithms
Left-shift algorithm: multiply-add

= (...((y2-k ⋅2 + xk-1a)⋅2 + xk-2a)⋅2 + ... + x1a)⋅2 + x0a =

k times

= y + xk-1a2k-1 + xk-2a2k-2 + … + x1a21 + x0a = y + a ⋅ x

Shift/Add Algorithm
Right-shift version

with Carry-Save Adder

Sequential shift-and-add multiplier
with a carry save adder

