Lecture 8

FPGA Multipliers

Radix 2 Sequential Multipliers

Required Reading

Behrooz, Parhami, Computer Arithmetic: Algorithms and Hardware Design

Chapter 9, Basic Multiplication Scheme Chapter 10, High-Radix Multipliers Chapter 12.3, Bit-Serial Multipliers Chapter 12.4, Modular Multipliers

FPGA Multipliers

Notation

Y Multiplicand
$$Y_{k-1}Y_{k-2}...Y_1Y_0$$

X Multiplier
$$x_{m-1}x_{m-2} \dots x_1 x_0$$

P Product
$$(Y \cdot X)$$
 $p_{m+k-1}p_{m+k-2} \dots p_2 p_1 p_0$

If multiplicand and multiplier are of different sizes, usually multiplier has the smaller size

Xilinx FPGA Implementation Equations

$$Z = (2x_{m-1} + x_{m-2}) \cdot Y \cdot 2^{m-2} + \dots + (2x_{i+1} + x_i) \cdot Y \cdot 2^i + \dots + (2x_3 + x_2) \cdot Y \cdot 2^2 + (2x_1 + x_0) \cdot Y \cdot 2^0$$

$$(2x_{i+1}+x_i) \cdot Y = p_{i(k+1)}p_{ik}p_{i(k-1)}...p_{i2}p_{i1}p_{i0}$$

$$p_{ij} = x_i \cdot y_j \text{ xor } x_{i+1} \cdot y_{j-1} \text{ xor } c_j$$

$$c_{j+1} = (x_i \cdot y_j)(x_{i+1} \cdot y_{j-1}) + (x_i \cdot y_j) \cdot c_j + (x_{i+1} \cdot y_{j-1}) \cdot c_j$$

$$c_0 = c_1 = 0$$

Modified Basic Cell Xilinx FPGA Implementation

Modified Basic Cell Xilinx FPGA Implementation

$$p_{ij} = x_i \cdot y_j \text{ xor } x_{i+1} \cdot y_{j-1} \text{ xor } c_j$$

$$c_{j+1} = (x_i \cdot y_j)(x_{i+1} \cdot y_{j-1}) + (x_i \cdot y_j) \cdot c_j + (x_{i+1} \cdot y_{j-1}) \cdot c_j$$

Xilinx FPGA Multiplier

Radix 2 Sequential Multipliers

Notation

$$a_{k-1}a_{k-2} \dots a_1 a_0$$

$$x_{k-1}x_{k-2} \dots x_1 x_0$$

p Product
$$(a \cdot x)$$
 $p_{2k-1}p_{2k-2} \dots p_2 p_1 p_0$

If multiplicand and multiplier are of different sizes, usually multiplier has the smaller size

Multiplication of two 4-bit unsigned binary numbers in dot notation

Number of partial products = number of bits in multiplier x Bit-width of each partial product = bit-width of multiplicand a

Basic Multiplication Equations

$$p = a \cdot x$$
 $x = \sum_{i=0}^{k-1} x_i \cdot 2^i$

$$p = a \cdot x = \sum_{i=0}^{k-1} a \cdot x_i \cdot 2^i =$$

$$= x_0 a 2^0 + x_1 a 2^1 + x_2 a 2^2 + \dots + x_{k-1} a 2^{k-1}$$

Shift/Add Algorithm Right-shift version

Shift/Add Algorithms Right-shift algorithm

$$p = a \cdot x = x_0 a 2^0 + x_1 a 2^1 + x_2 a 2^2 + \dots + x_{k-1} a 2^{k-1} =$$

$$= (\dots((0 + x_0 a 2^k)/2 + x_1 a 2^k)/2 + \dots + x_{k-1} a 2^k)/2 =$$

$$k \text{ times}$$

$$p^{(0)} = 0$$

$$p^{(j+1)} = (p^{(j)} + x_j a 2^k) / 2$$
 $j=0..k-1$
$$p = p^{(k)}$$

Sequential shift-and-add multiplier for right-shift algorithm

Right-shift multiplication algorithm: Example

Right-shift algorithm

	_								
====	===	==	==	==	==	==:	==	==	=
а			0						
X		1	0	1	1				
====	===	=	==	==	==	===	==	==	=
$p^{(0)}$		0	0	0	0				
+x ₀ a		1	0	1	0				
2p ⁽¹⁾	0	1	0	1	0				
p ⁽¹⁾		0	1	0	1	0			
+x ₁ a		1	0	1	0				
2p ⁽²⁾	0	1	1	1	1	0			
p ⁽²⁾		0	1	1	1	1	0		
+x ₂ a		0	0	0	0				
2p ⁽³⁾	0	0	1	1	1	1	0		
$p^{(3)}$		0	0	1	1	1	1	0	
+x ₃ a		1	0	1	0				
2p ⁽⁴⁾ p ⁽⁴⁾	0					1			
$p^{(4)}$		0	1	1	0	1	1	1	0
====	===	=	==	=:	==	==:	==	==	=

Area optimization for the sequential shift-and-add multiplier with the right-shift algorithm

Shift/Add Algorithms Right-shift algorithm: multiply-add

$$p^{(0)} = y2^k$$

$$p^{(j+1)} = (p^{(j)} + x_j a 2^k) / 2 \qquad j=0..k-1$$

$$p = p^{(k)}$$

$$= (...((y2^k + x_0a2^k)/2 + x_1a2^k)/2 + ... + x_{k-1}a2^k)/2 =$$

k times

=
$$y + x_0a2^0 + x_1a2^1 + x_2a2^2 + ... + x_{k-1}a2^{k-1} = y + a \cdot x$$

Signed Multiplication

- Previous sequential multipliers are for unsigned multiplication
- For signed multiplication:
 - assume sign-extended operation for $p^{(j)} + x_j a$
 - if 2's complement multiplier is POSITIVE
 right-shift sequential algorithms (shift-add) will work directly
 - if 2's complement multiplier is NEGATIVE than we must use "negative weight" for x_{k-1} and subtract x_{k-1} a in the last cycle
- Slight increase in area due to control and one-bit sign extension on inputs of adder
 - Unsigned: k bit number + k bit number \rightarrow k+1 bit number
 - Signed: k+1 bit sign extended number + k+1 bit sign extended number → k+1 bit number

Sequential multiplication of 2's-complement numbers with right shifts (positive multiplier)

=====	===:	==	==	==	==	==	===	==	==	==	==
a x 				0							
p ⁽⁰⁾ +x ₀ a				0							_
2p ⁽¹⁾ p ⁽¹⁾ +x ₁ a	1	1	1	1 0 1	1	1	0				_
2p ⁽²⁾ p ⁽²⁾ +x ₂ a	1		1	0 0 0	0	0	0	0			_
2p ⁽³⁾ p ⁽³⁾ +x ₃ a	1	1	1	0 1 1	0	0		0	0		_
2p ⁽⁴⁾ p ⁽⁴⁾ +x ₄ a	1	1	1	0 0 0	0	1		1	0	0	_
2p ⁽⁵⁾ p ⁽⁵⁾	1	1					0				0

Sequential multiplication of 2's-complement numbers with right shifts (negative multiplier)

=====	==:	==	==	==	==	==	===	=:	==	==	==
а		1	0	1	1	0					
Χ		1	0	1	0	1					
===== p ⁽⁰⁾ +x ₀ a	==:		0	0	0	0	===	=		==	==
2p ⁽¹⁾ p ⁽¹⁾ +x ₁ a	1		0 1 0	0	1	1	0				_
2p ⁽²⁾ p ⁽²⁾ +x ₂ a	1			1	0	1	0	0			_
2p ⁽³⁾ p ⁽³⁾ +x ₃ a	1			0	0	1	1		0		_
2p ⁽⁴⁾ p ⁽⁴⁾ +(-x ₄ a)	1	1		1	0	0	1			0	_
2p ⁽⁵⁾ p ⁽⁵⁾ ======	0						1	1	1		

Shift/Add Algorithm Left-shift version

Shift/Add Algorithms Left-shift algorithm

$$p = a \cdot x = x_0 a 2^0 + x_1 a 2^1 + x_2 a 2^2 + \dots + x_{k-1} a 2^{k-1} =$$

$$= (\dots((0 \cdot 2 + x_{k-1} a) \cdot 2 + x_{k-2} a) \cdot 2 + \dots + x_1 a) \cdot 2 + x_0 a =$$

$$k \text{ times}$$

$$p^{(0)} = 0$$

$$p^{(j+1)} = (p^{(j)} \cdot 2 + x_{k-1-j}a)$$
 $j=0..k-1$ $p = p^{(k)}$

Sequential shift-and-add multiplier for left-shift algorithm

Left shifts are not as efficient for two's complement because must sign extend multiplicand by k bits

Left-shift multiplication algorithm: Example

Left-shift algorithm

=====	==	==	=	===	==	==	==	==
a					1	0	1	0
Χ					1	0	1	1
=====	==	==	=:	===	==:	==	==	==
$p^{(0)}$					0	0	0	0
2p ⁽⁰⁾				0	0	0	0	0
+x ₃ a					1	0	1	0
p ⁽¹⁾				0	1	0	1	0
2p ⁽¹⁾			0	1	0	1	0	0
+x ₂ a					0	0	0	0
p ⁽²⁾			0	1	0	1	0	0
2p ⁽²⁾		0	1	0	1	0	0	0
+x ₁ a					1	0	1	0
p ⁽³⁾		0	1	1	0	0	1	0
2p ⁽³⁾	0	1	1	0	0	1	0	0
+x ₀ a					1	0	1	0
p ⁽⁴⁾	0	1	1	0	1	1	1	0
=====	==	==	=	===	==	==	==	==

Shift/Add Algorithms Left-shift algorithm: multiply-add

$$p^{(0)} = y2^{-k}$$

$$p^{(j+1)} = (p^{(j)} \cdot 2 + x_{k-(j+1)}a) \qquad j=0..k-1$$

$$p = p^{(k)}$$

$$= (...((y2^{-k} \cdot 2 + x_{k-1}a) \cdot 2 + x_{k-2}a) \cdot 2 + ... + x_1a) \cdot 2 + x_0a = k \text{ times}$$

$$= y + x_{k-1}a2^{k-1} + x_{k-2}a2^{k-2} + ... + x_1a2^1 + x_0a = y + a \cdot x$$

Shift/Add Algorithm Right-shift version with Carry-Save Adder

Sequential shift-and-add multiplier with a carry save adder

