ECE 646
Cryptography
and
Computer Network Security

Course web page:

ECE web page → Courses → Course web pages
→ ECE 646

Kris Gaj

Research and teaching interests:
 • cryptography
 • network security
 • computer arithmetic
 • FPGA & ASIC design and testing

Contact:
 Science & Technology II, room 223
 kgaj@gmu.edu

Office hours: Wednesday 6:00-7:00 PM
 Tuesday, Thursday, 4:30-5:30 PM
ECE 646
Part of:
MS in CpE
 Network and System Security (required)
 Computer Networks (elective)
MS in EE
 Communications & Networks (elective)
Ph.D. in Electrical and Computer Engineering
MS in Information Security & Assurance
MS in E-Commerce
Certificate in Information Systems Security
Ph.D. in Information Technology

NETWORK AND SYSTEM SECURITY

Concentration advisors: Jens-Peter Kaps, Kris Gaj

1. ECE 542 Computer Network Architectures and Protocols
 – S.-C. Chang, et al.

2. ECE 646 Cryptography and Computer Network Security
 – K. Gaj, J-P. Kaps, D. Hwang – lab

3. ECE 746 Advanced Applied Cryptography
 – K. Gaj, D. Hwang – lab, project: C/C++, VHDL, or analytical

4. ISA 656 Network Security
 – A. Stavrou
Grading Scheme

• Homework 20%
• Labs 20%
• Quizzes 10%
• Midterm Exam 20%
• Final Exam 30%

Lecture

• viewgraphs / whiteboard

• viewgraphs available on the web
 (please, extend with your notes)

• books
 1 required (Stallings)
 1 optional (all chapters available on the book web page)

• articles (CryptoBytes, RSA Data Security Conf., CHES, CRYPTO, etc.)

• web sites - Crypto Resources
 standards, FAQs, surveys
Homework (1)

- reading assignments
- theoretical problems (may require basics of number theory or probability theory)
- problems from the main textbook
- short programs
- literature surveys

Homework (2)

- optional assignments

 short programs vs. analytical problems or HDL codes

 ✓ More time consuming
 ✓ Most time spent on debugging
 ✓ Relatively straightforward

 ✓ Typically less time consuming
 ✓ More thinking
 ✓ Little writing
Midterm exam

- 2 hours 30 minutes
- multiple choice test + short problems
- open-books, open-notes
- practice exams available on the web
- midterm exam review session - **optional**

 Tentative date:
 Wednesday, October 29th

Quizzes

- 10-15 minutes
- one-two questions related to the most recent lectures
- closed-books, closed-notes
- unannounced
Final exam

2 hours 45 minutes
Multiple choice + several problems

Wednesday, December 10
7:30 – 10:15 PM

Laboratory

• 5-6 labs
• based on the GMU educational software, public domain cryptographic programs & libraries, or evaluation versions of commercial products
• done at home or in the ECE labs: software downloaded from the web
• based on detailed instructions
• grading based on written reports (answers to questions included in the instructions)
Tentative list of laboratory topics

1. Secure e-mail: PGP – Pretty Good Privacy
2. Historical ciphers
3. Properties of classical cryptosystems
4. Properties of public key cryptosystems
5. Secure e-mail: S/MIME

Follow-up courses

Cryptography and Computer Network Security
ECE 646

Advanced Applied Cryptography
ECE 746

Digital System Design with VHDL
ECE 545

Computer Arithmetic
ECE 645
Cryptography and Computer Network Security

- Modular integer arithmetic
- Historical ciphers
- Classical encryption (DES, IDEA, RC5, AES)
- Public key encryption (RSA, DH, DSA)
- Hash functions and MACs
- Digital signatures
- Public key certificates
- Secure Internet Protocols - e-mail: PGP and S-MIME - www: SSL
- Cryptographic standards

Advanced Applied Cryptography

- Operations in the Galois Fields GF(2^n)
- AES
- Stream ciphers
- Elliptic curve cryptosystems
- Random number generators
- Smart cards
- Attacks against implementations (timing, power, fault analysis)
- Efficient and secure implementations of cryptography
- Security in various kinds of networks (IPSec, wireless)
- Zero-knowledge identification schemes

“Typical” course

- Time
 - Difficulty

This course

- Time
 - Difficulty