Syllabus

Instructor
Jens-Peter Kaps
Engineering Building, 3222
Phone: (703) 993-1611
jkaps@gmu.edu
http://ece.gmu.edu/~jkaps

Date & Time & Place
Tuesday, 7:20pm–10:00pm, Innovation Hall 205

Course Web Page
The course web page will contain the latest announcements, handouts, assignments, source code and useful/interesting web links.
The web page is accessible via http://ece.gmu.edu/~jkaps/courses/ece746

Textbooks
 If you already own the 4th edition you don’t have to by the 5th edition for this course. However, it is your responsibility to make sure that you read the corresponding material and that errors in the earlier edition do not create wrong results in assignments.
 (all chapters of this book can be downloaded from the books web page)

You can find links to more interesting books on the class home page.

Prerequisite
- ECE 646 Cryptography and Computer-Network Security

- Strong math background. Practical programming skills in C or C++

Office Hours
Please check the class web page for the current office hour schedule. You should feel free to approach Dr. Kaps at any time if you need help in addition to the scheduled sessions. The best way to contact me is via email.
Homework
There will be weekly homework assignments. These will include questions, and programming exercises. Homework must be handed in on time. If you can’t make it to the class, please e-mail it me. Homework handed in after solutions are posted will receive zero credit.

Project
An important part of this course is the semester project. The project should be an in-depth study of a topic in cryptography (e.g. side channel attacks, identity based encryption, efficient implementations, etc.) and will result in a report and a presentation. A list of possible project topics will be provided. Each project will be completed either alone or in a group of two. You are required to perform a literature study on the topic you have chosen, preform experiments, implement functions, or analyze several resources and write a journal style report. Towards the end of the semester, you will be required to perform a final presentation of your project.

- **Project Presentation:** May 3rd
- **Final Project Paper Due:** May 10th

Examinations
There will be two exams during the course, a midterm exam and a final exam. The exams will be open book and open notes and contain a multiple choice test and short problems. The questions will range from mild to difficult.

- **Midterm Exam:** March 8th
- **Final Exam:** May 17th

Grading
The following weight distribution will be used to calculate the final grade:

- 15% Homework
- 40% Project
- 20% Midterm Examination
- 25% Final Examination