A Comprehensive Set of Schemes for PUF Response Generation

Bilal Habib and Kris Gaj

Cryptographic Engineering Research Group (CERG)
George Mason University
Fairfax, VA, USA

Co-Author

Kris Gaj Associate Professor

Outline

- PUF Introduction
- PUF Schemes for ID Generation
- Methodology for Ranking the Schemes
- Results
- Conclusions

PUF Introduction

PUF: Physical Unclonable Function

Applications:

- Device Authentication
- Secret Key Generation

PUF Space

PUF Metrics

- Uniqueness
- Uniformity
- Reliability

Area

Power

Time

Security

- Unclonability
- Resistance to side-channel
- Resistance to machine learning

Raw Data for RO-based PUF

Component = Ring Oscillator (RO) Counter Raw en Data

Raw Data for SR-Latch PUF

Component = SR-Latch

Collection of Raw Data From

PUF ID Generation Schemes

ID Generation and Evaluation

Software scripts were developed for PUF ID Generation and Evaluation

PUF ID Generation Schemes

More Challenge-Response Pairs

Fewer components per key bit

Smaller area

Scheme

Pairwise Comparison (PC)

Comparing the Neighboring Components (CNC)

Binary Lehmer-Gray (BLG)

S-ArbRO-2

Identity Mapping (**Id-Map**)

More independent bits

Higher uniqueness

Higher resistance to machine learning attacks

Pairwise Comparison (PC)

PUF Response Length = | M/2 |

Pairwise Comparison (PC)

- Components: 15, 10, 14, 16, 17, 11
- Pairs: $(15 \ge 10)$ (14 < 16) $(17 \ge 11)$
- Response: 1 0 1

Comparing the Neighboring Components (CNC)

PUF Response Length = M-1

Comparing The Neighboring Components (CNC)

• Components: 15, 10, 14, 16, 17, 11

• Pairs:(15>=10) (10<14) (14<16) (16<17) (17>=11)

• Response: 1 0 0 1

Binary Lehmer-Gray (BLG) ID Generation

- No. of Components, M = 4, Set Size, S = 4
- Raw Data from Components: 10, 12, 5, 17.

		sum	bin	Gray
J=1	12>10	Sum = 1	1	1
J=2	5<10, 5<12	Sum = 0	00	00
J=3	17>10, 17>12, 17>5	Sum = 3	11	10

- PUF Response: 1 00 10
- Total Response Length:

$$(M/S) * \sum_{i=2}^{S} \lceil \log_2 i \rceil$$

S-ArbRO-2 Scheme

K = Subset Sizeri – Raw Data for Component i

PUF Response Length =
$$\frac{N!}{K! * (N - K)!} * 2^{K-1}$$

S-ArbRO-2 Scheme ID Generation

- M=6, K=2, N=3: E1=[10, 5], E2=[6, 4], E3=[17, 11]
- Three Subsets:

```
\{E1, E2\}, \{E1, E3\}, \{E2, E3\} = \{[10, 5], [6, 4]\}, \{[10, 5], [17, 11]\}, \{[6, 4], [17, 11]\}
```

- Subset-Choice Challenge = (01) ⇒
 Group selected: {E1, E3}
- Subset-Processing Challenge = $(10) \Rightarrow$

E1:
$$r2-r1 = 5-10 = -5$$

E3:
$$r1-r2 = 17-11 = 6$$

- Sum: -5+6=1
- $1>0 \Rightarrow PUF \text{ response} = 1$

Identity Mapping ID Generation

Total Bits Generated = $2^{M} - M - 1$

- M = 3, Raw Data from Components: 52, 49, 48
- Pairs: {(52,49), (52,48), (49,48)} $d(f_1,f_2) = (f_1-f_2)^2 \Rightarrow 9,16,1$
- Triplets: $\{(52,49,48)\}\$ $d(f_1,f_2,f_3) = (f_1-f_2)^2 + (f_1-f_3)^2 + (f_2-f_3)^2 \Rightarrow 26$ Q = [9, 16, 1, 26]
- Response : [Q[i]/q] % 2
- If q = 5, Parameter
- Response bits = 1101

Methodology

Ranking of ID Generation Schemes

- Ranking of Schemes based on PUF Metrics
 - Worst Case (WC) Uniqueness
 - Average Uniformity
 - Worst Case (WC) Reliability
- In ideal case,
 - WC Uniqueness should be 50%
 - Avg Uniformity should be 50%
 - WC Reliability should be 100%

Worst Case Uniqueness

- Any two devices should be least similar.
 - Number of Devices:N
 - Response Size: L bits
 - Hamming Distance: $HD(R_i, R_j)$
- Worse Case Uniqueness:

$$\text{WC Uniqueness} = \text{Min}_{i=1}^{i=N-1} \text{Min}_{j=i+1}^{j=N} \left(\frac{\text{min}(\text{HD}(\text{Ri},\text{Rj}), L-\text{HD}(\text{Ri},\text{Rj}))}{L} \right) * 100\%$$

Choose the two most similar devices

Average Uniformity

- Number of 1s and 0s should be equal in PUF response
- Response size = L bits
- Uniformity of a device:

$$Uniformity(i) = \frac{1}{L} \sum_{l=1}^{L} r_{i,l} * 100\%$$

• Average over N devices:

$$Avg\ Uniformity = \frac{1}{N} \sum_{i=1}^{N} Uniformity(i)$$

Worst Case Reliability

• PUF response should be the same under different conditions in the field

Number of Devices : N

– #Field Conditions :

PUF Response Length: L bits

Hamming Distance : HD

Worst Case Reliability:

WC Reliability =
$$Min_{i=1}^{N} \begin{pmatrix} c \\ Max & HD(R_i, R_{i,c}) \\ 1 - \frac{c=1}{L} \end{pmatrix} * 100\%$$

Balance Among the Three Metrics

- All metrics important
- Which one should be sacrificed?
- Distance from Ideal PUF (DfI)

 $w_1 \bullet (50\%\text{-WC Uniqueness}) + w_2 \bullet |50\%\text{-Avg Uniformity}| + w3 \bullet (100\%\text{-WC Reliability})$ where w1, w2, w3 are weights dependent on application

- We choose the ID Generation scheme with the smallest value of DfI
- In case of Reliability:
 - (100%-WC Reliability) < Error Correction Capability

Results

Data Set

PUF Type	FPGA Family	No. of Devices	Components/ Device	Source
Ring Oscillator	Spartan-3	193	512	VT
SR-Latch	Spartan-6	25	256	GMU
SR-Latch	Zynq-7000	10	256	GMU

	PC	CNC	BLG	S-ArbRO-2	Id-Map
Parameters			Set Size = 16	K=2	t=2
PUF Response Length (L)	[M/2]	M-1	$(M/S) * \sum\nolimits_{i=2}^{S} \lceil \log_2 i \rceil$	$\binom{M}{K} * 2^{k-1}$	$\binom{M}{t}$
Min Components Required for (L=128 bits)	256	129	48	24	17

Worst Case Uniqueness

Data Set	PC	CNC	BLG	S-ArbRO	ID-Map
Spartan-3 VT	30.47%	28.91%	26.56%	13.28%	24.22%
Spartan-6 GMU	33.59%	35.16%	32.81%	16.41%	34.38%
Zynq-7000 GMU	41.41%	38.28%	36.72%	28.12%	39.84%

- PC scheme offers the best result for Spartan-3 and Zynq-7000
- CNC scheme offers the best results for Spartan-6

Average Uniformity

Data Set	PC	CNC	BLG	S-ArbRO	ID-Map
Spartan-3 VT	52.25%	49.71%	47.70%	50.24%	57.80%
Spartan-6 GMU	44.71%	44.03%	44.65%	52.96%	63.68%
Zynq-7000 GMU	46.79%	46.87%	47.89%	54.14%	47.34%

- S-ArbRO scheme offers the best result for Spartan-3 and Spartan-6
- BLG scheme offers the best results for Zynq

Worst Case Reliability Test Conditions

Data Set	Voltage Variation	Temperature
Spartan-3 VT	±10%	65°C
Spartan-6 GMU	±5%	0°C-85°C
Zynq-7000 GMU	±5%	0°C-85°C

Worst Case Reliability Spartan-3

	PC	CNC	BLG	S-ArbRO	Id-Map
Rel @ +10% V	91.40%	87.50%	83.59%	48.14%	94.53%
Rel @ -10% V	92.96%	91.40%	84.37%	38.2%	92.96%
Rel @ 65°C	92.96%	95.31%	90.62%	39.06%	97.65%

Worst Case Reliability Spartan-6

	PC	CNC	BLG	S-ArbRO	Id-Map
Rel @ +5% V	97.65%	99.21%	94.57%	96.87%	89.84%
Rel @ -5% V	96.09%	95.31%	90.62%	96.09%	85.93%
Rel @85°C	96.09%	94.53%	85.93%	89.06%	89.84%
Rel @0°C	96.09%	96.87%	92.18%	93.75%	90.62%

Worst Case Reliability Zynq-7000

	PC	CNC	BLG	S-ArbRO	Id-Map
Rel @ +5% V	93.75%	93.75%	86.71%	92.18%	75.81%
Rel @ -5% V	93.75%	93.75%	85.93%	92.96%	91.4%
Rel @ 85°C	89.84%	91.40%	78.90%	83.59	64.84%
Rel @ 0°C	94.53%	94.53%	89.84%	92.96	92.18%

Balance Among the Three Metrics Spartan-3

Best Worst

Distance from Ideal	PC	CNC	BLG	S-ArbRO	Id-Map
50%-WC Uniqueness	19.53%	21.08%	23.44%	36.72%	25.78%
50%-Avr Uniformity	2.25%	0.29%	2.30%	0.24%	7.80%
100%-WC Reliability	8.60%	12.50%	16.41%	61.80%	7.04%
DfI(0.3, 0.2, 0.5)	10.61%	12.63%	15.70%	41.96%	12.81%
DfI(0.4, 0.2, 0.4)	11.70%	13.49%	16.40%	39.46%	14.69%

DfI (w1,w2,w3)

Balance Among the Three Metrics Spartan-6

Best Worst

Distance from Ideal	PC	CNC	BLG	S-ArbRO	Id-Map
50%-WC Uniqueness	16.41%	14.84%	17.19%	33.59%	15.62%
50%-Avr Uniformity	5.29%	5.97%	5.35%	2.96%	13.68%
100%-WC Reliability	3.91%	5.47%	14.07%	10.94%	14.07%
DfI(0.3, 0.2, 0.5)	7.94%	8.38%	13.26%	16.14%	14.46%
DfI(0.4, 0.2, 0.4)	9.19%	9.32%	13.57%	18.40%	14.61%

DfI (w1,w2,w3)

Balance Among the Three Metrics Zynq-7000

Best

Distance from Ideal	PC	CNC	BLG	S-ArbRO	Id-Map
50%-WC Uniqueness	8.59%	11.72%	13.28%	21.88%	10.16%
50%-Avr Uniformity	3.21%	3.13%	2.11%	4.14%	2.66%
100%-WC Reliability	10.16%	8.60%	21.10%	16.41%	35.16%
DfI(0.3, 0.2, 0.5)	8.30%	8.44%	14.96%	15.60%	21.16%
DfI(0.4, 0.2, 0.4)	8.14%	8.75%	14.17%	16.14%	18.66%

DfI (w1,w2,w3)

Conclusions

- Binary Lehmer-Gray, S-ArbRO-2, and Identity Mapping offer the ability to use less components
- PC is the most expensive scheme, in terms of area
- In case of WC Uniqueness, PC scheme offers the best result for two data sets
- In case of **Avg Uniformity**, **S-ArbRO** offers the best results for two data sets
- In case of WC Reliability, three different schemes offer the best results for each data set, respectively

Python scripts for PUF ID generation and Evaluation

available at

https://cryptography.gmu.edu/puf

Questions