RTL Implementations and FPGA Benchmarking of Three Authenticated Ciphers Competing in CAESAR Round Two

William Diehl and Kris Gaj

ECE Department, George Mason University, Fairfax, Virginia, USA
http://cryptography.gmu.edu

Based on work supported by the National Science Foundation under Grant No. 1314540
Outline

• CAESAR Competition and Authenticated Ciphers
• CAESAR Hardware API & Compliant Code Development
• Discussion of Designs
• Results
• Summary, Conclusions, and Lessons Learned
Cryptographic Standard Contests

IX.1997 X.2000

AES

15 block ciphers → 1 winner

I.2000 XII.2002

NESSIE

12 block ciphers

XI.2004 IV.2008

CRYPTREC

15 block ciphers

X.2007 X.2012

eSTREAM

34 stream ciphers → 4 HW winners + 4 SW winners

XII.2017

SHA-3

51 hash functions → 1 winner

I.2013

57 authenticated ciphers → multiple winners

CAESAR

57 authenticated ciphers
Authenticated Ciphers

Combine the functionality of confidentiality, integrity, and authenticity

Notation: Npub = Public Message Number; (Enc) Nsec = (Encrypted) Secret Message Number; AD = Associated Data
Evaluation Criteria

- Security
- Software Efficiency
 - μProcessors
 - μControllers
- Hardware Efficiency
 - FPGAs
 - ASICs
- Flexibility
- Simplicity
- Licensing
Motivation for Universal API

- Hardware API can have a high influence on Area and Throughput/Area ratio of all implementations
- Hardware API typically much more difficult to modify than Software API
- Without a comprehensive hardware API, the comparison highly unreliable and potentially unfair
- Designers can “play to strengths” and “hide weaknesses”

Conclusion: *Impossible to perform fair evaluation of hardware implementations without standardized interface and protocol*
CAESAR Hardware API

Specifies:

• Minimum compliance criteria
• Interface
• Communication protocol
• Timing characteristics

Assures:

• Compatibility
• Fairness

Timeline:

• Based on the GMU Hardware API presented at CryptArchi 2015, DIAC 2015, and ReConFig 2015
• Revised version posted on Feb. 15, 2016
• Officially approved by the CAESAR Committee on May 6, 2016
General Interface and Internal Architecture for High-Speed Implementations

Additional detail available at https://cryptography.gmu.edu/athena/
GMU Support for Designers of VHDL/Verilog Code

Implementer’s Guide
• v1.0 - May 12, 2016

Development Package
a. VHDL code of generic pre-processing and post-processing units for high-speed implementations (src_rtl)
b. Universal testbench (AEAD_TB)
c. Python app used to automatically generate test vectors (aeadtvgen)
d. Six reference high-speed implementations of Dummy authenticated ciphers

https://cryptography.gmu.edu/athena/index.php?id=download
The API Compliant Code Development

- **Development Package** src_rtl
- **Manual Design**
 - Specification
 - Reference C Code
- **HDL Code**
- **Automated Optimization**
 - FPGA Tools
- **Preliminary Post Place & Route Results** (Resource Utilization, Max. Clock Frequency)
- **Functional Verification**
 - Test Vectors
 - Development Package aeadtvgen
 - Formulas for the Execution Time & Throughput
 - Development Package AEAD_TB
- **Pass/ Fail**

Formulas for the Execution Time & Throughput: 10
Ciphers
• SCREAM, POET, Minalpher
• OMD (Not presented)

Compliance
• Round Two published specification
• C Reference Code
• CAESAR HW API

Optimization Criteria
1. Throughput-to-area (TP/A) ratio
2. Throughput (Maximize frequency; minimize cycles/block)
3. Area (Minimize LUTs)
SCREAM

Side-Channel Resistant Authenticated Encryption with Masking

- Based on Liskov, Rivest, and Wagner’s “Tweakable Block Cipher”
- Unique tweak for every block
- 128-bit key, state variable, tag
- Padding for Associated Data
SCREAM (cont’d)

Cryptographic primitive is Tweakable Block Cipher (TBC) (E_K)

10 steps (σ) per block, 2 rounds (ρ) per step
- Tweak updated once per step to form Tweak key (TK)

Non-linear substitution layer composed of 8x8 “nearly involute” S-Boxes

16-bit Round Constant, $RC(\rho,\sigma)$ applied each round

Linear permutation layer L-Box

Bus widths are 128 bits unless indicated
Basic Iterative versus Unrolled Architectures

Basic Iterative
- datapath width = state size
- one clock cycle per one round/step

Unrolled x2
- datapath width = state size
- one clock cycle per two rounds

Typically TP/A ratio decreases

SCREAM – CipherCore Datapath

Interesting Features:
- Initial Tweak = f(npub, counter, type & length of block)
- Tag = f(Auth, E_K[Sum])
- Truncation of output of partial final plaintext and ciphertext blocks

Notation:
- Auth = Authenticator
- Sum = Checksum
- Trunc = Truncation
- T0 = Initial Tweak
- E_K = Tweakable Block Cipher
- npub = Public Message Number
- exp_tag = expected tag

Bus width of thick wires is 128 bits unless indicated. Bus width of thin wires is 1 bit.
POET

- Pipelineable On-line Encryption with Authentication Tag
- “Cipher Agnostic” – uses any 128-bit block cipher and ε-AXU keyed hash function
- AES-128 used for block cipher, and AES-4 used for keyed hash
- 128-bit key, state variable, tag
- Padding for Associated Data
Interesting Features:
- Requires three sub keys (L, K, Kf) and round key generation in AES
- L sub key multiplied by 2 in GF(2^{128}) during header processing
- Variable shifts for tag generation and verification

Notation:
- $x2 = GF(2^{128}) \times 2$ field multiplier
- $\tau = $ Authenticator
- $\Sigma = $ Associated Data cumulative sum
- \gg (\ll) = Variable right (left) shift
- $|M| = $ length of message
- $S = E_{K}(|M|)$
Minalpher

- Uses Tweakable Even-Mansour (TEM) with Minalpher-P primitive
- 2 TEM cores for encrypt/decrypt and tag generation in parallel
- 128-bit key, 256-bit state, 128-bit tag
- Each final plaintext block must have *10 padding even if full
Minalpher (cont’d)

Each Minalpher-P consists of
- S (SubNibbles) 4x4 S-Boxes,
- T (ShuffleRows),
- E (Round Constant),
- M (MixColumns)
- Decryption has reversed ‘E’ and ‘M’

17.5 rounds of Minalpher-P in one TEM
- Final “half round” is an extra S and T function

Bus widths of paths A and B are 128 bits.
Interesting Features:
- Parallel encrypt/decrypt and tag generation using 2 TEM cores requires 19 cycles/block
- “Serial truncator” to remove final \(*10 \) during decryption

Notation:
TEM = Tweakable Even Mansour
A = Associated Data register
M = Plaintext/Ciphertext Register (TEM)
C = Plaintext/Ciphertext Register (TEM aux)
L = Block specific mask
T = Cumulative Tag generation
npub = Public Message Number
exp_tag = expected tag

Bus width of thick wires is 128 bits unless indicated. Bus width of thin wires is 1 bit.
FPGA Devices

- Xilinx Virtex-6: xc6vlx240tff1156-3

FPGA Tools:

- Synthesis Tool: Xilinx XST 14.7
- Implementation Tool: Xilinx ISE 14.7
- Automated Optimization: ATHENa

Options of tools:
No embedded memories and no embedded DSP units allowed inside of AEAD
Results of GMU Implementations – Virtex 6

SCREAM has highest Throughput-to-Area (TP/A) Ratio
- Basic iterative (=1 round/clock cycle) higher TP/A than Unrolled x2

POET has high TP but large area
- Several AES cores required

Minalpher close to SCREAM in TP/A
Implementations by Other Groups

SCREAM (by Lubos Gaspar & Stephanie Kerckhof, CG UCL, INRIA)
 • Full-block width custom interface
 • No support for the CAESAR API Protocol

POET (by Amir Moradi, EmSec Rühr-Universität Bochum)
 • Full-block width custom interface
 • No support for the CAESAR API Protocol

Minalpher (by Takeshi Sugawara, Minalpher Team/Mitsubishi Electric)
 • Fully compliant with the CAESAR API
Differences in API Specifications

SCREAM
- Contains 5-bit “length” input and output fields (Allows for partial blocks)

POET
- No input for length of final block (key parameter in tag generation and verification)
- Only 1 output port (Details of tag generation and verification left to higher protocol)

Comparison with non-GMU Implementations – Virtex 6

Minalpher has highest (TP/A) Ratio
- 1 TEM core versus 2 TEM cores in GMU design (39 cycles/block vs. 19 cycles/block)

SCREAM TP/As close to GMU
- Not compliant with CAESAR HW API

Divergent TP/A for POET
- Not compliant with CAESAR HW API
- Different choice of architecture
Comparison with all Round Two Candidates
Relative Throughput/Area in Virtex 6 vs. AES-GCM

Throughput/Area of AES-GCM = 1.020 (Mbit/s)/LUTs
Summary & Conclusions

Three functionally correct high-speed implementations of CAESAR Round Two Candidates using RTL design in CAESAR HW API

- Substantial part of GMU CERG benchmarking effort in support of CAESAR Round Two evaluations

SCREAM (w/basic iterative architecture) had highest TP/A in GMU CERG implementations

- Minalpher (Mitsubishi version) highest TP/A overall
Lessons Learned

Features of implemented ciphers negatively affecting their performance

- Variable Shifts and Truncations
- #Ciphertext blocks ≠ #Plaintext blocks
One Stop Website

https://cryptography.gmu.edu/athena/index.php?id=download
OR
https://cryptography.gmu.edu/athena
and click on CAESAR

- VHDL/Verilog Code of CAESAR Candidates: Summary I
- VHDL/Verilog Code of CAESAR Candidates: Summary II
- ATHENa Database of Results: Rankings View
- ATHENa Database of Results: Table View
- Benchmarking of Round 2 CAESAR Candidates in Hardware: Methodology, Designs & Results
- GMU Implementations of Authenticated Ciphers and Their Building Blocks
- CAESAR Hardware API v1.0
Questions?