
An Implementation Comparison of an IDEA Encryption Cryptosystem
on Two General-Purpose Reconfigurable Computers

Allen Michalski1, Kris Gaj1, Tarek El-Ghazawi2

1 ECE Department, George Mason University

4400 University Drive, Fairfax, VA 22030, U.S.A.
2 ECE Department, The George Washington University

801 22nd Street NW, Washington DC 20052, U.S.A.
{emichals, kgaj}@gmu.edu, tarek@seas.gwu.edu

Abstract. The combination of traditional microprocessors and Field Programmable Gate Arrays (FPGAs)
is developing as a future platform for intensive computational computing, combining the best aspects of
traditional microprocessor front-end development with the reconfigurability of FPGAs for computation-
intensive problems. Several prototype PC-FPGA machines have demonstrated significant speedups
compared to standalone PC workstations for computationally intensive problems. Cryptographic
applications are a clear candidate for this type of platform, due to their computational intensity and long
operand lengths. In this paper, we demonstrate an efficient implementation of IDEA encryption, using two
of the leading reconfigurable computers available, SRC Computers’ SRC-6E and Star Bridge Systems’
HC-36. We compare the hardware architecture and programming model of these reconfigurable
computers, and the implementation of a common IDEA encryption architecture in both platforms. Detailed
analyses of FPGA resource utilization for both systems, data transfer and reconfiguration overheads for
the SRC system, and a comparison between SRC and a public domain software implementation are given
in the paper.

1. Introduction

The need for faster computational processing methods has grown along with the desire to process
large amounts of data in shorter periods of time. Approaches to this problem have typically involved
microprocessor-based solution, utilizing concurrent processing with multiple processors within a single
machine or in a cluster of workstations over a network. Since their introduction, FPGAs have emerged as a
low cost complement to traditional microprocessor software and hardware solutions for computationally
intensive applications, due to their hardware reconfigurability [1].

Several workstation-based FPGA systems are available today for commercial applications. These
“reconfigurable computers” make use of workstation microprocessor(s) for front-end processing, and provide
one or more FPGAs for computations less suited for a microprocessor. The choice of how a design can be
divided between a microprocessor and an FPGA depends on the development environment available for the
system. In this paper, we explore the efficient implementation of pipelined IDEA encryption within two such
available reconfigurable computers: the SRC-6E from SRC Computers, and the HC-36 from Star Bridge
Systems. This paper discusses the hardware architectures and development tools of both systems in detail,
and provides FPGA timing and utilization results for both systems. A summary including the state of
development of both systems is also presented.

2. FPGAs and Reconfigurable Computing

An FPGA is a regular structure of basic modules called Configurable Logic Blocks (CLBs), which
can be interconnected to provide hardware implementations of algorithms required by a designer. FPGA
interconnects between modules are under the designer’s complete control [2]. The FPGAs used in both the
SRC and Star Bridge systems are the Xilinx Virtex II 6000 series, which have a capacity of six million
system gates, and provides dedicated logic for fast carry propagation for addition operations, multipliers that
handle operand sizes up to 18 bits, and block RAMs for local memory access. FPGAs are reconfigurable,
meaning that the FPGA device can be configured to carry out a specific function, and can be reconfigured to
carry out a different function at a later time.

The term “reconfigurable computing” is used to describe a combination of microprocessor systems
with FPGAs to provide a reconfigurable hardware environment. Both the SRC and Star Bridge systems are

examples of reconfigurable computing platforms. Reconfigurable computers offer benefits over
microprocessor-based hardware solutions because FPGAs can more easily exploit computational precision
and operand sizes required by the design, and can implement operation pipelining and parallelism specific to
the needs of the application being developed. Microprocessor instruction sets have fixed operand lengths that
may not match operand sizes specific to the design, and the implementation of algorithms typically involves
multiple-instruction executions for one algorithmic operation. In addition, much of the microprocessor’s
capability is unutilized, since a general-purpose microprocessor is designed to implement a wide variety of
operations specific to a workstation computing environment, whereas most design requirements for
cryptographic systems only use a subset of the full capabilities of a microprocessor. All of the resources of an
FPGA can be dedicated to the needs of a design, which provides a more efficient implementation versus a
single or multi-processor-based design solution.

3. The SRC-6E

3.1 SRC-6E Hardware Overview

The SRC-6E system architecture frontend
consists of two dual Intel processor motherboards.
Each motherboard contains two Intel P3 Xeon
processors and 1.5 GB of memory. Each system hosts
a multi-processor version of the Linux operating
system, and provides two distinct Linux-based
microprocessor-FPGA reconfigurable computers.

An SRC MAP® processor is attached to
each Int

.2 SRC-6E Programming Environment

SRC has created a development environm
addition

sted in each Linux platform within the SRC-6E. The compilation
process

processors with the code compiled for each.

el motherboard, as shown in Fig. 1. Each
MAP processor consists of two Xilinx Virtex II 6000
FPGA chips available for user logic, and a control
processor, which is also a Xilinx Virtex II 6000
FPGA, all running at a clock rate of 100 MHz. The control processor implements fixed control logic, and is
responsible for direct memory access (DMA) transfers between Intel system memory and the onboard
memory of the MAP processor. The user logic and control FPGAs have access to six banks of dual port 512k
x 64 bit static RAM providing a total of 24MB of memory external to the FPGAs. The MAP control
processor communicates with the Intel processors through a SNAP interconnect. The SNAP interconnect is a
high speed, low latency interface which functions as a Double Data Rate (DDR) memory interface, and plugs
into a DDR SDRAM slot on the motherboard. SNAP provides higher data throughput between the Intel
processor and the MAP processor versus component interfacing using the PCI-X bus.

Fig. 1. SRC-6E Hardware Architecture

3

ent that uses traditional programming paradigms in
 to hardware description language (HDL) development for implementing a design with the MAP

FPGAs, as shown in Fig. 2. The SRC environment provides the ability to implement FPGA user logic using
either C or FORTRAN sourcecode alone, or in combination with HDL sourcecode. GNU compilers are
provided for C or FORTRAN sources that target the Intel processors, and SRC provides its own C or
FORTRAN compilers that target the MAP processors. The MAP processor compilers produce Verilog code
which is then synthesized using Synplify Pro, and Xilinx tools perform map, place and route. The GNU
compilers allow the use of ANSI-compliant C or FORTRAN code and libraries, which allows for integration
with other existing UNIX applications.

The design environment is ho
consists of compilation of user logic HDL files, if present, that will execute on the MAP processor,

compilation of C or FORTRAN code that will also execute on the MAP processor, and compilation of the C
or FORTRAN code that will execute on the Intel processors. The compilation process places wrapper code
around logic that resides within the FPGAs to facilitate data transfer and control synchronization between the
microprocessor and MAP processor. The binary files produced by each compile process are combined into
one single executable for the host Intel platform, which is responsible for loading the Intel and MAP

 2

3.3 Designing within the SRC-6E

Designs in SRC can have
ther

e Intel or MAP processors. Within the
MAP pr

 HDL de 32 and

aracteristics are defined as functional, stateful, or
external.

essor, the compiler attempts to extract the maximum parallelism from the code
and gene

be attained by traditional functional testing of HDL outside of SRC and
aditional HLL debugging techniques, or using SRCs MAP debugger. The MAP debugger provides
ardwar

onsists of a Tyan S2720 dual Intel P4 Xeon processor motherboard with 4
ttached to the motherboard through the PCI-X bus is a PCI card containing two Virtex II

4000 FP

required operations performed on ei
th

ocessor, FPGA designs can be
implemented using a C or FORTRAN
source alone, a C or FORTRAN source
in combination with HDL, or
completely in HDL, using a C or
FORTRAN source to provide data
transfer services. A simple API is
available in the high-level language
(HLL) to provide control functionality
and data transfer functions between the
Intel and MAP processors, and the
passing of data to and from included user
64 bit types.

HDL source that is targeted for the MAP processor is called a macro. SRC supports either VHDL or
Verilog sources within macros. A macro’s primary ch

Fig. 2. Overview of the SRC Compilation Process

signs. MAP C sourcecode data types are limited to

 Additional characteristics define latency of the design and whether the design is pipelined. An
“info” file is used to describe these characteristics. A functional macro is one that carries no state
information, and therefore doesn’t require the reset of a state machine. A stateful macro is one that caries
state information and may need to be reset during a data cycle. An external macro is one that needs direct
hardware access to memory, versus using HLL calls to read memory and supply data to the design. Latency
defines how many clock cycles are needed before a result is available, and the pipeline attribute defines
whether the macro can take data on each clock cycle. The combination of all these attributes defines the HDL
macro supplied by the user.

If a C or FORTRAN source is used alone or in combination with HDL source to implement the
design within the MAP proc

rate pipelined hardware logic for instantiation in the MAP FPGAs [3].

3.4 Debugging within the SRC-6E

 Debugging within SRC can
tr
h e debugging of code compiled for the MAP processor, and emulation debugging of emulation or
simulation code. Emulation is based on specially formatted “data flow graph” C routines, provided by the
compiler from existing HLL source if that is used to implement logic, or by the user in an additional file if
HDL is also used, that emulates the functionality of the design being implemented in the MAP processor.
Simulation mode actually simulates the HDL produced by the compiler, which requires a license for a
Verilog simulator not included in the development environment.

4. The Star Bridge HC-36

4.1 HC-36 Hardware Overview

The Star Bridge HC-36a c
GB of memory. A

GAs for dedicated PCI and hardware control, one Virtex II 6000 FPGA allocated for user-designed
FPGA control functions, and 4 Virtex II 6000 FPGAs available for user logic, as in Fig. 3. FPGA clocks are
set to the PCI-X clock speed, with the FPGA digital clock manager used to provide clock speeds other than
the PCI-X clock speed. Star Bridge uses the name “HyperComputer®” to refer to this combination of
FPGAs, an Intel-based frontend, and Star Bridge’s VIVA development environment [4]. The environment is
hosted in Microsoft’s Windows 2000 Server operating system.

 3

FPGAs available for user logic are referred to as PE1 to PE4. These four PEs (Processing Elements)
have ded

uter FPGA.
XPoint c

t. Only one Quad Element is available in the
HC-36a,

.2 The Star Bridge Programming Environment

VIVA® is Star Bridge’s proprietary development environment. It provides a graphical user interface
based o

 FPGA array.
Objects

rovides its own proprietary synthesis tool for designs that will run on user FPGAs. The
target of

ted for a PE,
the synth

.3 Designing within VIVA

VIVA defines basic data types, from which objects can be built. The basic types are Bit, Variant,
Vector,

ove definition of types allows for recursion of large data sets into small data sets, which is
useful when a large operation is comprised of smaller operations of the same type. For instance, a 16-bit

icated 50-bit connections to each other. Each PE, along with the XPoint FPGA mentioned below,
has four banks of memory, each bank having 512 MB of RAM with a 64-bit PE interface. This gives a total
of 10 GB of memory with 20 64-bit independent memory channels within the user FPGAs.

Control FPGAs available to the user consist of an FPGA known as XPoint and a ro
onnects to the four user FPGAs using dedicated 32-bit data connections, and is allocated to provide

user-defined control interfacing to the user FPGAs. The router FPGA has dedicated 94-bit connectivity to the
user FPGAs, and provides additional user FPGA connectivity.

The base grouping of four PEs is called a Quad Elemen
 however each XPoint control FPGA can be used to control two Quad Elements. This structure of

one XPoint control FPGA along with two Quad Elements can be replicated to create larger FPGA arrays, and
is used to create larger Star Bridge platforms [4].

4

n “drag and drop” design principles. VIVA’s design language, “Implementation Independent
Algorithm Description Language” or IIADL, is object-based and uses object attributes to specify different
options within the design. Fig. 4 shows the VIVA Integrated Development environment (IDE).

Designs within VIVA can be allocated to execute on either the Intel platform or the
that execute on the Intel processor are implemented using pre-built VIVA libraries within Windows.

VIVA is able to use Windows COM (Component Object Model) to communicate with other Windows
applications, allowing Windows applications that make use of COM methods to be integrated in with VIVA
FPGA designs.

VIVA p
 the synthesis tool is defined by a system description. VIVA includes system descriptions for the

Pentium x86, which allows simulation of the
design in an x86, and for specific PEs in the
FPGA array. VIVA’s system descriptions
allow VIVA to abstract out the target
hardware description from the design to be
implemented, allowing VIVA to target
hardware other than its own.

If the design is targe

Fig. 4. Star Bridge IDE

esis EDIF output is fed into Xilinx
place and route tools to produce a final
binary, which VIVA then loads onto the
Intel processors and the FPGA array. After
initial execution, the VIVA binary can be
saved in a file format that can be loaded
using VIVA command-line tools or within
the VIVA development environment.

4

NULL, LSB, MSB and BIN. Bit is the only non-abstract fundamental data set. Within VIVA, data
sets are basically recursive combinations of Bits. Each type therefore has two basic objects associated with it:
an Exposer and a Collector. A data set Exposer takes the data set and outputs its two children data sets. A
collector does the opposite: it takes two child data sets and combines them into one parent data set. For
instance, a BIN016 (16-bit binary) data set, when exposed, will produce two BIN008 (8-bit binary) data sets.
A MSB016, when Exposed, will produce a MSB001 and a MSB015. This is equivalent to splitting out the
most-significant bit of a std_logic_vector(15 downto 0), and returning a std_logic and a std_logic_vector(14
downto 0).

The ab

 4

AND ga

e
designed

within VIVA

ign within
IVA is performed by loading the x86

system d

ced d

EA Algorithm

Data Encryption Algorithm (IDEA) is a symmetric block cipher developed by
uejia Lai and James Massey of the Swiss Federal Institute of Technology and published in 1990[5]. At that

e it w

 64-bit encrypted output. A round consists of a Transformation
half-roun

e first eight keys
are prov

plementation within SRC and Star Bridge

he most difficult
peration, multiplication mod (2 + 1) with the input of 0 = 2 , can be broken down into three cases:

te can be built using a tree of 2-bit AND gates, which can be built recursively. In order for recursion
of an operation to be properly implemented, two objects for the operation must be created: a base object of
the smallest acceptable operand size, and a recursive version of the object, which tells VIVA how to recurse
down to the base operand object. Operands can be overloaded by simply copying the operand object design
and changing the input data types, effectively overloading the operand type to handle different data sets.
Objects can incorporate other types of objects, which allows for the hierarchical building of basic objects.

VIVA provides basic operands such as AND, OR, and INVERT, which are standard to VIVA.
These basic objects can be implemented in multiple system descriptions. VIVA objects, in general, can b

 to be implemented in multiple system descriptions or in a specific system description only. VIVA
provides a library of additional operands, and data types built from the standard data types. This library,
Corelib, has objects ranging from registers through state machines used for design control to file I/O objects
for data transfer from and to a Windows file (see Fig. 5). This library is meant to be the basis for designs
built in VIVA.

4.4 Debugging

Debugging a des
V

escription into a design simulate
design components within the x86
environment. There is no in-place
hardware debugger, although one is
planned for future release. The simplest
method of input and output testing is
displaying inputs and outputs using
widgets, which can be displayed using
scrollbars, textboxes, graphics, and a
number of other selections, as in Fig. 5.
The clock can be manually single-stepped
or continuously run. Windows COM
objects can be integrated in to provide advan

5. IDEA

Fig. 5. VIVA Synthesis Output using the X86 System

ebugging of the data output of a design.

5.1 The ID

 The International
X
tim as suggested as a candidate to replace DES, however its widest adoption has been in PGP, which has
insured widespread use of the algorithm.

IDEA uses a 128-bit key to encrypt data blocks of 64 bits. IDEA consists of eight rounds follow by
a Transformation half-round that provides a

d and a Mangler half-round, of which an excellent description is provided by William Stallings in
the book “Cryptography and Network Security: Principles and Practice” [6]. IDEA makes use of three basic
operations to carry out encryption and decryption: a 16-bit XOR operation, a 16-bit modulo addition
operation (mod 216), and a 16-bit modulo multiplication operation (mod 216 + 1). In addition, an all-zero
operand input to a modulo multiplier within IDEA equals 216 for internal calculations.

Each round requires six keys: four for the Transformation half-round and two for the Mangler half-
round. For the total 8.5 rounds required for IDEA encryption, 52 16-bit keys are required. Th

ided by the input key. Each additional set of eight keys is generated by performing a circular left
shift of 25 bits of the previous eight key set.

5.2 A Common Design Choice for IDEA Im

The XOR and modulo addition operations of IDEA can be easily implemented. T
16 16o

 5

multiplic

)
if (ab mod 2) ≥ (ab div 2)

 2n + 1

ts are used to mux
 appropriate nonzero results and constants to provide

 repetitive
instantia

ired.
igh throughput. Both data and key scheduling were

can
be introd

on within SRC

 SRC, at least two source files are required. main.c is responsible
r reading in data and calling a user-defined function that loads a user-logic bitstream into the MAP

processo

AP C function to pass data. The SRC
fo file

ation of two nonzero inputs, multiplication
where one input is zero and multiplication where both
inputs are zero. For multiplication of two nonzero
numbers, the following rule is used [6]:

ab mod(2n + 1) = (ab mod 2n) - (ab div 2n

n n
ab mod(2n + 1) = (ab mod 2n) - (ab div 2n) +
 if (ab mod 2n) ≤ (ab div 2n)

For the remaining two cases, zero tes
in
the correct answer. To minimize latency, the use of a
Virtex II hardware multiplier was desired to implement
the two equations above. Since a 16x16 multiply
operation using a single Virtex II 6000 block multiplier
requires over 10 ns, a two-level three pipeline “divide-
and-conquer” strategy was used to meet the 10 ns
timing constraint. This method requires four 8x8
multiplies along with column additions [7].

Design choices for IDEA centered on making
each half-round modular to create a

tion, therefore key scheduling is broken into a
unit that can be implemented in a modular round. The
solution for key scheduling requires the generation of
six keys for each round. After eight keys have been
consumed, though, a 25-bit rotate left operation is
required. To accommodate the above two constraints, a
unique constant is input to each round’s key scheduler,
which selects a mux that determines where the key rotate

The design was pipelined in order to achieve h
pipelined, which allows this core to be used in IDEA breaking or encryption since different data blocks

Fig. 6. IDEA Block Diagram

ccurs within that round, if requoperation o

uced with either the same or a different key at each clock cycle. Pipeline placement was chosen
based on synthesized VHDL and Xilinx place and route results for a target Xilinx II 6000 FPGA and a timing
constraint of 10 ns (100 MHz). The final design has a pipeline latency of 116 clocks: each Transformation
half-round requires four clock cycles and each Mangler half-round requires ten clock cycles. Fig. 6 shows a
block diagram of the design.

6. IDEA within SRC

6.1 Design Implementati

To implement an algorithm within
fo

r. The second source IDEA_test.mc implements the MAP function that is called from main.c, and
describes a bitstream to be loaded into the MAP processor. This MAP function calls SRC functions that
control the data transfer between the Intel platform and the MAP processor, and uses a C for-loop structure
for passing data to C commands that implement data processing within the MAP processor and to user HDL
macros (see Table 2) that are also loaded within the MAP. In addition, an “info” file is required to specify
attributes of the IDEA VHDL instantiation for the MAP compiler.
 Two test cases were implemented within SRC, as shown in Tables 1 and 2. The first test case
instantiates the whole IDEA algorithm within VHDL, and uses the M
in for case one defines the VHDL user macro as a functional pipelined macro with a 116-clock latency.
The second case instantiates half-rounds within VHDL, and uses the MAP C function to instantiate the 8.5
rounds required by IDEA. The SRC info file for case two describes two VHDL macros, both being defined

 6

as functional pipelined macros with a 4 or 10-clock latency. These test cases are representative of SRC
design options, and allow for an FPGA resource and timing comparison between the two methods.
 To test for latency results, a Unix high-resolution time structure was used to time of the HLL

nction

 SRC Timing

Results of the SRC implementation of IDEA are summarized in Tables 3 and 4. The timing results were
independent of which of the two SRC implementations of IDEA described in Section 6.2 was used for the
measurements.

In Table 3, the execution times are provided for four input data sizes ranging from 5 MB to 20 MB. In
each case, the encryption was accomplished by ten calls to the MAP function with a proportional amount of
input data to the total data processed. An end-to-end time includes a single MAP configuration time in the
range of 102 ms, and the total MAP processing time, which is proportional to the amount of data being
encrypted. Since the reconfiguration of the MAP FPGA can be performed before any input data becomes
available for processing, this configuration may be treated as a part of a one-time set up routine.

 It is worth noting that the time spent for processing data inside of the MAP FPGA (MAP FPGA
Processing Time) constitutes less than 8% of the Total MAP Processing time. Instead, the majority of the

fu call within main.c, while SRC timer calls were used within IDEA_test.mc to time the input and
output DMA data transfers and the time to process the data. HLL time reads are in us, while timer reads
within SRC provide the current clock tick. A conversion to ms was performed to arrive at the final timing
calculations.

6.2 Results of

Table 1. Portions of IDEA Rounds Instantiated using VHDL
 -- Round 8.
 signal outkeyhigh_half_round8, outkeylow_half_round8,
 outblockdata_half_round8, outkeyhigh_round8,
 outkeylow_round8, outblockdata_round8: std_logic_vector(63 downto 0);
begin
 -- Round 1.
 round1_T: component IDEAroundT
 port map (clk => clk, inkeyhigh => inkeyhigh, inkeylow => inkeylow,
 mux_sel => X"00000000", inblockdata => inblockdata,
 outkeyhigh => outkeyhigh_half_round1, outkeylow => outkeylow_half_round1,
 outhalfblockdata => outblockdata_half_round1);

 round1_M: component IDEAroundM
 port map (clk => clk, inkeyhigh => outkeyhigh_half_round1,
 inkeylow => outkeylow_half_round1, mux_sel => X"00000000",
 inhalfblockdata => outblockdata_half_round1,
 outkeyhigh => outkeyhigh_round1, outkeylow => outkeylow_round1,
 outblockdata => outblockdata_round1);

Table 2. Portions of IDEA Rounds Instantiated using C
 /* Round 8 */
 uint64_t outkeyhigh_half_round8, outkeylow_half_round8, outblockdata_half_round8,
 outkeyhigh_round8, outkeylow_round8, outblockdata_round8;
 ……
 int i;
 ……
 cm2obm_c(c, data_in, size*8);
 wait_server_c();
 read_timer(start_loop);

 for (i=0; i<size; i++) {
 keyhigh = a[i];
 keylow = b[i];
 data = c[i];

 /* Round 1 */
 IDEAroundT(keyhigh, keylow, (uint32_t)0x0, data, &outkeyhigh_half_round1,
 &outkeylow_half_round1, &outblockdata_half_round1);
 IDEAroundM(outkeyhigh_half_round1, outkeylow_half_round1, (uint32_t)0x0,
 outblockdata_half_round1, &outkeyhigh_round1, &outkeylow_round1,
 &outblockdata_round1);

 7

time is spent for transferring data to and from the MAP using the DMA transfer between the
icroprocessor‘s Computer Memory and the MAP’s On-Board Memory. The MAP Transfer In Time is

grea

e number of
cloc

ughput (not including reconfiguration) is in the range of 60 MB/s, which is only 7.5% of the
theo

Data Size

m
ter than the MAP Transfer Out Time because in our implementation of IDEA, each input consists of both

a data block (64 bits) and the corresponding key (128 bits), while an output includes only an encrypted data
block (64 bits).

In Table 4, the corresponding MAP Processing and Data Throughputs are calculated. All throughputs are
for the most part independent of the amount of data being processed. The MAP FPGA Processing
Throughput approaches the theoretical maximum of 64 bits per clock cycle = 800 MB/s. The only reasons for
a slightly smaller value of this throughput are the latency of the pipelined architecture of IDEA (116 clock
cycles) and a control overhead associated with implementing a loop structure within the MAP function,
measured to be equal to 47 clock cycles [13]. The MAP FPGA Processing time expressed in th

k cycles is equal to:

 Encryption Unit Latency + (Number of Data Blocks Processed – 1) + Loop Control Overhead (1)

The MAP Transfer In Throughput is greater than the MAP Transfer Out Throughput because of the larger
number of 64-bit words being processed without changing the OBM address. Finally, the Total MAP
Processing Thro

retical maximum of 800 MB/s. The limited data transfer bandwidth and a lack of overlapping between
data transfers and data computations inside of the MAP FPGA contribute to this considerable slow down.

5 MB

10 MB

15 MB

20 MB

6.3 Results of SRC FPGA T

SRC v1.4 c r

Xilinx v5.2 was used a
two minutes, map v
approximately 66 m
averaged around fou

 shows Xilinx PAR results

s) Data Size

PC
End-to-End
Time (m

5 MB 185.6

10 MB 269.7

15 MB 350.8

20 MB 432.6

Test Case
VHDL Only 90

VHDL-C 114

ompile
 for m

times a
inutes. F
r minute

5
combination to instantiate th

Table 3. FPGA Processing and Configuration Times
Thr
(

MA
Pro

iming

s were
p, plac
eraged
or the V
s, while
 for bo

(ms) Time (ms) (ms) (ms) (ms)

MAP FPGA
Conf Time

MAP Total
Processing

MAP Data
Transfer In

MAP FPGA
Processing

MAP Data
Transfer Out

102.0 83.6 53.0 6.6 24.0

102.0 167.7 104.4 13.1 50.1

102.2 248.7 153.5 19.7 75.4

101.8 330.8 203.0 26.2 101.5

Slice
06 (26%
42 (33%

e highe
Table 4. FPGA Throughput Results
oughput
MB/s)

Throughput
(MB/s)

Throughput
(MB/s)

Throughput
(MB/s)

P Total
cessing

MAP
Transfer In

MAP
Transfer Out

MAP FPGA
Processing

 59.8 282.9 207.9 761.1

29.8 287.3 199.4 762.0

.1 .8 20.1 293 198 762.3

6 .9 62.5 15.1 295. 196 7

and Resource Utilization

for MAP lation. Sy s v7.2 was or systhesis, and
e a VHDL-only ca hesis times averaged around

nd three while and route) times averaged
-C case, sis times ed around inutes, map times

e and rou) times a d approxim 94 minutes. Table
th the SRC VHDL and VHDL-C instantiation cases. Using a VHDL-C

hows an 8% increase in the number of FPGA

s Slice FFs LUTs Mult 18x18 Clock Period
21 (1 % 579 ns) 132 9%) 10111 (15%) 136 (94) 11.
60 (2 5 (1 (94% 379 ns) 184 7%) 1043 5%) 136) 11.

Table 5. SRC PAR Results

used compi nopsy used f
nd route. For

arou
the

minutes,
se, synt

 place (PAR
HDL synthe averag two m

 plac te (PAR verage ately

r level hierarchy of IDEA s

8

slice flip-flops used. This is due to SRC control logic that is inserted in its instantiation of the IDEA rounds.
lock tim nces were n le.

7. IDEA VIVA

 timing; however, the CoreLib library’s beta state of development
revented its integration with CoreLib’s I/O objects.

C ing differe egligib

 within

VIVA was used to build up a design that matches the VHDL implementation. Fig. 7 shows portions
of the Mangler half-round, and Fig. 8 shows portions of an IDEA test sheet. The VIVA PE system
descriptions are not complete; a limitation of this is that the full I/O capabilities of the FPGA were not
available. As a result, a limitation in this design is that the key inputs are constant, as the minimum number
of inputs required is 192 bits (64 data + 128 key), while only 128 bits are available for inputs in the system
description. Functional verification was performed using the same IDEA data file as in SRC.
 Measuring of timing results of data transfer or data processing on the Intel side requires using a
COM wrapper around a Windows timer, as a standard VIVA timer object is not available within the current
library. A COM object was developed for
p

Fig. 7. VIVA Half Round Mangler Design Fig. 8. IDEA in VIVA

7.1 Results of Star Bridge FPGA Timing and Resource Utilization

Test Case Slices

VIVA 17292 (51%)

VIVA v2.2 was used for sy

PAR times scaled exponentially dep
five rounds took approximately 7 h
alpha state of their synthesis algori

utes, and PAR for the full round in

is discrepancy is that VIVA may
was 4% lock timin
constant s the SRC

8. Cryp

algorithm

wa

m
Table 6 shows Xilinx PAR

sed was 24% greater, while the nuu
th

 smaller. C g was
 versu design.

to++ Software Impleme

 Crypto++ v5 was used to
workstation, to normalize the mic
implementations. 20 MB of data w

, using the same input d
processing of the data were taken us

The time required to proce
throughput of 2.5 MB/s. When com
is 24 times faster than the soft

Table 6. Star Bridge PAR Results
 Slice FFs LUTs Mult 18x18 Clock Period

 16118 (23%) 7639 (11%) 136 (94%) 12.191 ns

nthesis, and Xilinx v4.2 was used for map and PAR. VIVA synthesis and
ending on the number of rounds synthesized: one round took 25 minutes,
ours, and the full 8.5 rounds took approximately 36 hours, due to the
thms. The
implemen

Xilinx map time for th n was 14
tation was 85 minutes.

DL-only design, the number of Slices
 only 3% greater. An explanation for

be using only one LUT per CLB slice. The total number of LUTs used
slight This co son n nputs are

the Crypto library’s IDEA encryption

re implementation. When compared to the time including the FPGA

e full round implementatio

 results. Compared to the SRC VH
mber of Slice Flip Flops used was

 ly longer. mpari is tentative si ce the key i

ntation versus SRC

 implement IDEA encryption within software on SRC’s Linux-based
roprocessor capability between the software and the software-FPGA
as processed using ten calls to
ata as SRC and VIVA. Timing measurements for IDEA encryption
ing a UNIX high resolution timer.
ss 20 MB of data was approximately 8 seconds, which corresponds to a
pared to SRC’s MAP Processing Throughput for IDEA, the SRC design

9

configuration time, the SRC design was 18.5 times faster. Given continuous processing of large data blocks,
speed increase maximum.

tionality with each release.

uting
resource

his paper
shows h

An IDEA encryption
algorithm

 design environment. The SRC system is
ased on traditional programming languages, builds upon known development paradigms, and can

g HLL source code for designs targeted at FPGAs. Star Bridge‘s VIVA provides a new
evelopment paradigm that has the potential to provide an easier method of design entry, and can target

several d

ww.starbridgesystems.com

the throughput advantage of SRC will approach the 24-times

9. SRC and Star Bridge Limitations

Both systems have limitations, which should be noted before conclusions can be understood.
SRC’s compiler can only handle certain HLL constructs within a MAP processor subroutine. It is

not a limitation in this design, and SRC has been adding significant func
Star Bridge’s synthesis technology is in an alpha state. Significant improvements have been seen

with the last few product releases; however the product is still in its early development stages. Star Bridge’s
CoreLib library is in a beta state, and design elements within the library are not final.

Both systems plan on implementing multiple FPGA use within their next software releases. SRC
and Star Bridge currently cannot make use of more than one FPGA.

10. Conclusion

Reconfigurable computing is a platform that can provide larger and more efficient comp
s for implementing computationally intensive design solutions Both SRC and VIVA have unique

reconfigurable computer environments that provide complimentary ways achieving this goal. T
ow the designer can use SRC’s development environment to implement design objectives using

different combinations of traditional HLL development with HDL development, and how Star Bridge’s
VIVA environment provides a new paradigm for FPGA design entry and synthesis.

 is implemented in both environments for comparison.
Both SRC and Star Bridge take a different approach in their

b
incorporate existin
d

ifferent architectures in addition to its own.
The combination of a PC with FPGAs provides a high-speed design alternative to designs

implemented solely in PC software. This paper shows that the FPGA’s maximum throughput can be
significantly reduced due to time required to configure the FPGA and data transfer between PC memory and
memory available to the FPGA. While the effect of reconfiguration can be reduced with large data
processing, the effect of data transfer is a consistent bottleneck to maximum throughput if large amounts of
data need to be transferred.

References

1. Singleterry, R., Sobieszczanski-Sobieski, J. Brown, S., “Field-Programmable Gate Array Computer in Structural

Analysis: An Initial Exploration”, available at http://w
2. Parnell, K., Mehta, N., “Programmable Logic Design Quick Start Handbook”, available at www.xilinx.com
3. SRC Inc. Web Page, http://www.srccomp.com
4. Star Bridge Systems Web Page, http://www.starbridgesystems.com
5. Lai, X., Massey, J., “A Proposal for a New Block Encryption Standard”, Proceedings, EUROCRYPT ’90, 1990.
6. Stallings, W., “Cryptography and Network Security: Principles and Practice”, 2nd Edition, pgs. 102-109, 128, 1999.
7. Parhami, B., “Computer Arithmetic Algorithms and Hardware Designs”, pgs 191-192, 2000.
8. Dai, W., Crypto++ v. 5, http://www.cryptopp.com, Sep. 2002.

. VIVA User’s Guide, Version 2.2
E C Programming Environment Guide, v1.2, 2003, available from SRC Computers.

. The SRC-6E MAP Hardware Guide, 2003, available from SRC Computers.

 S in the

 is, N.,"Performance and Overhead in a Hybrid

9
10. The SRC-6
11
12. ‘Reconfigurable, Inherently Parallel “Hypercomputing” ’, PowerPoint presentation, 2002, available from Star

Bridge Systems.
13. Fidanci, O.D., Diab, H., El-Ghazawi, T., Gaj, K., Alexandridis, N., "Implementation trade-offs of Triple DE

t," 2002 MAPLD International Conference, Sep. 2002. SRC-6e Reconfigurable Computing Environmen
14. Fidanci, O.D., Poznanovic, D., Gaj, K., El-Ghazawi, T., Alexandrid

Reconfigurable Computer," Reconfigurable Architecture Workshop, RAW 2003, Apr. 2003.

 10

