Hardware-Software Codesign of RSA for Optimal Performance vs. Flexibility Trade-off

Motivation

- New SoC device (Zynq-7000) and new software (Vivado) facilitating hardware/software codesign
- Combining flexibility and scalability of software with performance and low power/energy consumption of hardware
- Significant speed-up over purely software implementation
- Minimizing the communication overhead between the microprocessor and hardware accelerator

Design Methodology

- **Device - Xilinx Zynq-7000 SoC**
 - Processing System (PS) – ARM based Microprocessor System
 - Programmable Logic (PL) – a 28nm Xilinx reconfigurable logic equivalent to Artix-7 FPGA

- **Platform - ZedBoard Development Board**
 - Xilinx Zynq-7000 All Programmable SoC XC7Z020-CLG484-1
 - Bare Metal Mode

- **Software – C program on ARM in PS**
 - Based on RELIC library by D.F. Aranha and C.P.L. Gouvêa
 - Three modular exponentiation (ME) schemes: Left-to-Right (L2R), Right-to-Left (R2L) and Sliding Window (SLID), selected at run time
 - Four operand sizes: 512, 1024, 1536, 2048 bits, selected at run time

- **Hardware Accelerator - RTL VHDL design in PL**
 1. **Compute Kernel**: Coprocessor unit to perform compute-intensive tasks
 2. **Controller**: Interprets commands sent by PS
 3. **I/O Interface**: Interface with the bus that includes argument and result storage
 4. **Local Memory**: To store the intermediate results in hardware

- **Communication Interface**
 - AMBA Advanced Extensible Interface 4 (AXI4)
 - AXI4-Stream used for the transmission of arguments and results
 - AXI4-Lite used for the transmission of commands
 - Processing system (PS) is connected to the hardware accelerator through DMA engine to stream data in burst mode
 - Simple DMA Transfer using AXI DMA Core operating at 100 MHz

- **Tools**
 - Xilinx Vivado Design Suite 2015.4
 - Xilinx SDK 2015.4

Results

- **Speed-up of our Hardware/Software design as compared with the Software Implementation of all three exponentiation schemes**

Conclusions

- 3 exponentiation schemes and 4 operand sizes, controlled at run time
- Up to 57x speedup as compared to the software implementation based on RELIC, running on the same platform
- 2x reduction in speed vs. less-flexible design by San et al. with the entire ME (R2L only) in hardware
- Less than 1% communication overhead
- A novel approach to support algorithmic and implementation level flexibility
- Balanced hardware/software partitioning
- Generalizable to other public-key cryptosystems

Acknowledgements

This poster is based upon work supported by the National Institute of Standards and Technology, U.S. Department of Commerce under Grant No. 60NANB15D058