
FPGA Accelerated Tate Pairing Based
Cryptosystems over Binary Fields

Chang Shu #1, Soonhak Kwon ∗2, Kris Gaj #3

#Department of Electrical & Computer Engineering, George Mason University
4400 University Drive, Fairfax, VA 22030-4444, USA

1cshu@gmu.edu
3kgaj@gmu.edu

∗Department of Mathematics, Sungkyunkwan University
Suwon, Korea

2shkwon@skku.edu

Abstract— Tate pairing based cryptosystems have recently
emerged as an alternative to traditional public key cryptosystems
because of their ability to be used in multi-party identity-based
key management schemes. Due to the inherent parallelism of the
existing pairing algorithms, high performance can be achieved via
hardware realizations. Three schemes for Tate pairing computa-
tions have been proposed in the literature: cubic elliptic, binary
elliptic, and binary hyperelliptic. For our implementation we have
chosen the binary elliptic case because of the simple underlying
algorithms and efficient binary arithmetic. In this paper, we
propose a new FPGA-based architecture of the Tate pairing-
based computation over the binary fields F2239 and F2283 . Even
though our field sizes are larger than in the architectures based
on cubic elliptic curves or binary hyperelliptic curves with the
same security strength, nevertheless fewer multiplications in the
underlying field need to performed. As a result, the computational
latency for a pairing computation has been reduced, and our
implementation runs 10-to-20 times faster than the equivalent
implementations of other pairing-based schemes at the same level
of security strength. At the same time, an improvement in the
product of latency by area by a factor between 12 and 46 for an
equivalent type of implementation has been achieved.

I. INTRODUCTION

Pairing based cryptography has become a subject of active
research recently because it is the basis of a new class of
public key cryptosystems called identity based cryptosystems.
In these cryptosystems, a sender can derive a public key of a
receiver directly from an ID of the receiver, without the need
for any additional information. The basic idea of identity based
cryptosystems was proposed by Shamir [14]. Applying pairing
techniques to identity based cryptography was suggested first
by Boneh and Franklin [16], and then extended by Sakai et
al. [17].

Initially, the implementations of pairing based cryptosys-
tems were commonly believed to be slow because of the heavy
cost of underlying computations. A significant progress in
this area has been accomplished by the works of Galbraith
et al. [11], Barreto et al. [8], Granger et. al. [5], [6], and
Duursma and Lee [7]. The optimizations introduced by these
authors involved delicate techniques of deleting unnecessary
operations from the Miller’s algorithm [12]. In particular,
the work of Duursma and Lee [7] promoted the study of

efficient pairing computations for elliptic curves over Galois
fields of characteristic three, F3m . Subsequently, their idea was
applied to the case of binary fields in [10], and generalized by
Barreto et al. [9] to encompass different characteristics of the
underlying field, as well as computations over hyperelliptic
curves.

To the authors’ knowledge, Kerins et al. [1], [2], and
Grabher and Page [3] were the first to report hardware imple-
mentations of pairing based cryptosystems. Both publications
considered Duursma-Lee algorithm for elliptic curves over
cubic fields. Recently, Ronans et al. [4] proposed the dedicated
hardware for computing pairing on hyperelliptic curves using
the algorithm introduced in [9].

Though the cubic elliptic and binary hyperelliptic cases have
strong merits with the high security they offer for relatively
low operand sizes, they also have some drawbacks for hard-
ware implementations. First, the arithmetic circuits over cubic
fields, F3m , are more complex and costly in terms of the area
and power compared to the circuits for computations over
F2m . Secondly, the binary hyperelliptic case [4] involves more
complicated higher-level operations than the binary elliptic
case, and the data path may be very complex for hardware
implementations.

In this paper, we propose a low latency hardware accelerator
for the Tate pairing-based cryptosystems on supersingular el-
liptic curves over binary fields. We choose FPGAs as our target
devices not only because they can serve as fast prototyping
platforms, but also because of their reconfigurability. The
reconfigurability is crucial in this application because of an
early stage of development of the field, the lack of standards,
and the constant progress in the cryptanalysis of pairing based
cryptosystems, which may affect key sizes, and thus the sizes
of all operands, already in the near future.

Our implementation is based on the algorithms presented
in [9] and [10]. Even though the binary elliptic curves require
relatively long operands (compared to the cubic elliptic and
binary hyperelliptic cases), the arithmetic operations in the
algorithms we apply are simple and easy to parallelize. We
introduce a compact design for the extension field multiplier
CA by sharing an XOR array in case that one of the two

FPT 200610-7803-9729-0/06/$20.00  2006 IEEE

operands is the same for the underlying field multiplications.
Our controller is realized using hardwired logic. We derive the
method to simplify the datapath for the final exponentiation.
We also consider the optimal choices of parameters such
as digit sizes of multipliers to further optimize the design.
Consequently, our pairing accelerator can run 10-to-20 times
faster than the ones published in [1], [3], [4], at the same level
of security strength with the lower product of latency times
area.

This paper is organized as follows. In Section 2, we
introduce the mathematical background behind Tate pairing
computations. In Section 3, we present two algorithms adopted
in our implementations. In Section 4, we discuss the software
implementation results for both algorithms and two binary
fields selected based on the security analysis. In Section 5, we
describe in detail our FPGA-based implementation. Finally,
the conclusions from our research are drawn in Section 6.

II. OVERVIEW OF TATE PAIRING COMPUTATION

Let E be an elliptic curve over a finite field Fq , where q is
a power of a prime. Let l > 0 be an integer relatively prime
to q and let k be the least positive integer satisfying qk ≡ 1
(mod l). Such k is called a security multiplier or embedding
degree of E. Let E[l] = {P |lP = O} and E(Fq)[l] = {P ∈
E(Fq)|lP = O}.

A divisor D on E is a formal (finite) sum of the points P
on the curve, D =

∑
np(P), np ∈ Z. We call D a degree

0 divisor if
∑

np = 0. A principal divisor is a divisor of
the form (f) =

∑
np(P), where f is a rational function on

E and P is a point of E with nP the order of multiplicity
of f at P . One can refer [13] for elementary introduction of
divisor theories. The (reduced) Tate pairing τl on the set E[l]
is defined as follows.

Definition 1: Let P ∈ E[l](Fq) and Q ∈ E[l](Fqk). The
Tate pairing is a map

τl : E(Fq)[l] × E(Fqk)[l] −→ F
×
qk/(F×

qk)l

with τl(P, Q) = fP (DQ)
qk−1

l , where fP is a rational function
satisfying (fP) = l(P) − l(O) and DQ is a degree 0 divisor
equivalent to (Q)− (O) such that DQ and (fP) have disjoint
supports.

It is well known that τl is a non-degenerate bilinear pairing
[13]. An effective algorithm for finding a rational function fP

satisfying (fP) = l(P) − l(O) with P ∈ E[l] was proposed
by Miller [12]. The Miller’s algorithm was further improved
by the works of [5], [6], [8], [9], [10], [11].

Let E be a supersingular elliptic curve over F2m with
gcd(m, 2) = 1 defined by

Eb : Y 2 + Y = X3 + X + b, b = 0, 1.

Then it is well known that the corresponding elliptic curves
have the embedding degrees k = 4 and have orders dividing
22m + 1. More precisely we have

|Eb(F2m)| = 2m + 1 + (−1)b2
m+1

2 , if m ≡ 1, 7 (mod 8)

= 2m + 1 − (−1)b2
m+1

2 , if m ≡ 3, 5 (mod 8).

III. ALGORITHMS FOR PAIRING FOR SUPERSINGULAR

ELLIPTIC CURVES OVER BINARY FIELDS

Inspired by the work of Duursma and Lee [7], a nice
formula for the Tate paring computation of supersingular
elliptic curve over binary field was proposed in [9], [10].
Moreover by introducing eta pairing technique, revised version
of [9] contains an improved formula which reduces the number
of iterations by half. The algorithms in [9], [10] use repeated
product of the term g2iP (ψQ). Here P, Q are points on Eb and
gP (X, Y) denotes the tangent line at P . That is if P = (α, β),
then gP is given by the equation gP (x, y) = (α2 +1)x+β2 +
b + y. Also ψ is a distortion map (automorphism) defined by

ψ : Eb −→ Eb, with ψ(x, y) = (x + s2, y + sx + t),

where s2 + s + 1 = 0 and t2 + t + s = 0.
The results in [9], [10] imply that the Tate pairing τ(P, Q)

is given by

τ(P, Q) =

(
m−1∏
i=0

g2iP (ψQ)2
2m−i

)22m−1

.

Algorithm 1 A modified algorithm from [9], [10] for parallel
computation of Tate pairing.
Require: P = (α, β), Q = (x, y)
Ensure: C = τ(P, Q)
1: C ← 1,
2: α ← α4, β ← β4, v ← x2 + 1, θ ← αv,

u ← x2 + y2 + b + m−1
2

{Initialize}
3: for i = 0 to m − 1 do
4: A ← β + θ + u + (α + v)s + t
5: C ← C2

6: C ← C · A
7: α ← α4, β ← β4, u ← u + v,

v ← v + 1, θ ← αv
8: end for
9: C ← C22m−1 {Final exponentiation}

For a point P = (α, β) on a supersingular curve, it
is straightforward to verify that point doublings follow a
nice formula 2iP = φi(α(2i), β(2i)), where φ is defined as
φ(x, y) = (x + 1, y + x) and α(i) denotes α(i) = α2i′

with
i′ ≡ i (mod m) and i′ ≥ 0. One can show inductively that
φi(x, y) = (x + i, y + ix + εi), where εi = 0 if i ≡ 0, 1
(mod 4), and εi = 1 if i ≡ 2, 3 (mod 4)

Thus,

g2iP (x, y) = (α(2i+1)
i + 1)x + β

(2i+1)
i + b + y (1)

where (α(j)
i , β

(j)
i) = φi(α(j), β(j)). Note that α

(j)
i =

(αi)(j) = (α(j))i since the automorphism φ and the Frobenius
map are commutative to each other.

By refining eta pairing approach, Barreto et al. [9] success-
fully reduced the number of loop iterations by half so that
they showed

τ(P, Q) =

⎛
⎝�(ψQ)

m−1
2∏

i=0

g2iP (ψQ)2
m−1

2 −i

⎞
⎠

MT

(2)

2

where MT = (22m − 1)(2m ∓ 2
m+1

2 + 1)(2
m+1

2 ± 1), and
�(X,Y) is an equation of line passing 2

m+1
2 P and εP with

ε = (−1)
b+ε m+1

2 . �(X,Y) is given by

�(X, Y) = Y + β + b + εm+1
2

+ (α +
m − 1

2
)(X + α).

Algorithm 2 A modified algorithm from [9] for parallel
computation of Tate pairing.
Require: P = (α, β), Q = (x, y)
Ensure: C = τ(P, Q)
1: C ← 1
2: α ← α2 + 1, β ← β2 + 1, u ← y + b + 1,

v ← x + 1, θ ← αv {Initialize}
3: for i = 0 to m−1

2
do

4: A ← β + θ + u + (α + v + 1)s + t
5: C ← C2

6: C ← C · A
7: if i < m−1

2
then

8: α ← α4, β ← β4, u ← u + v + 1,
v ← v + 1, θ ← αv

9: end if
10: end for
11: A ← A + (α2 + v + 1) + s
12: C ← C · A
13: C ← CMT , MT = (22m − 1)(2m + 2

m+1
2 + 1)(2

m+1
2 − 1)

{Final exponentiation}

Here we computed the product by �(ψQ) = �(x + s2, y +
sx+ t) after the for-loop, unlike in the original algorithm [9].
This is possible because the last element g

2
m−1

2 P (ψQ) of the
product in Equation 2 is related to �(ψQ) by the relation

�(ψQ) = g
2

m−1
2 P (ψQ) +

m + 1
2

+ α2 + x + s.

In Alg. 2, the values of α and β can be recovered after the
accumulative multiplication stage without additional memo-
ries. After reviewing previous works [1], [3], [4] on FPGA
implementations of Tate pairing and analyzing comparable
finite fields of equivalent security levels, we choose two finite
fields F2239 and F2283 . Our modified Algorithms 1 and 2 have
the following characteristics.

1) They are parallel algorithms in the sense that the two
crucial operations C ← C2A and θ ← αv can be done
in parallel.

2) We use a polynomial basis for our implementation of the
above algorithms since a polynomial basis has an advan-
tage over a normal basis for computing multiplications,
even though a normal basis has a simple squaring and
square root operation.

3) We do not compute square root as in the original algo-
rithms, because in the pentanomial case where m = 283,
we found that square root operation in hardware is rather
complicated unlike the trinomial case, where square root
operation is as fast as squaring [15].

IV. SOFTWARE IMPLEMENTATION RESULTS

We have implemented both Alg. 1 and 2 for Tate pairing
over binary fields F2239 and F2283 constructed via f239(x) =
x239 + x36 + 1 and f283(x) = x283 + x12 + x7 + x5 + 1,

respectively. The subfield arithmetic was realized via a public
domain C++ library named LiDIA [20], and we developed
the high level operations. All the codes were compiled with
g++ 3.0.4 and simulations were performed on a Xeon station
working at 2.8 GHz. With our software implementations, we
can generate the bilinear test-vectors for our FPGA realizations
of pairing. In Table I, we show that Alg. 2 is 1.5 times
faster than Alg. 1 on average because half iterations in the
accumulative multiplication stage are performed.

TABLE I

TIMING OF TWO ALGORITHMS OF TATE PAIRING OVER BINARY FIELDS, ON

A XEON WORKSTATION AT 2.8 GHZ.

Finite Latency of Latency of Speedup of
Field F2m Alg. 1 (ms) Alg. 2 (ms) Alg. 2 vs. Alg. 1

F2239 10.8 7.5 1.44
F2283 18.1 12.2 1.48

Although the arithmetic of paring computation of binary
elliptic curve is very simple, there is no known FPGA im-
plementation at this moment and the reason might be low
security multiplier (embedding degree). However since the
hardware implementation of the cubic field is not so efficient
compared with binary field and the binary hyperelliptic curve
has complex arithmetic operation for additions (which make
the data path complicated for FPGA), it is desirable to design
an FPGA accelerator for binary elliptic case and compare it
with existing architectures. From the previous results on cubic
elliptic and binary hyperelliptic cases, we chose two fields
F2239 for the comparison with cubic case [1], [3] and F2283

for the comparison with binary hyperelliptic case [4].

V. FPGA IMPLEMENTATIONS

In this section, we focus on the FPGA implementations
of Tate pairing on supersingular elliptic curves over binary
fields, F2239 and F2283 . Both Alg. 1 and 2 contain mainly two
stages, accumulative multiplication and final exponentiation, in
both of which the operations in F24m are involved. The best
approach is to represent F24m as an extension of F2m with
a convenient basis, and work over the smaller field whenever
possible. We use the basis {1, s, t, st} for F24m over F2m , with
s ∈ F22m , t ∈ F24m satisfying:

s2 + s + 1 = 0 and t2 + t + s = 0. (3)

To obtain a high-efficiency pairing accelerator, one must
consider issues such as: algorithm selection, top architecture,
parallelism, resource sharing and efficient realization of the
underlying field arithmetic.

Algorithm comparison: The most attractive advantage of
using Alg. 2 instead of Alg. 1 is that it takes a half of
iterations in the accumulative multiplication stage. However,
a lower complexity of the data-path for final exponentiation
can be gained when using Alg. 1 considering that its final
exponentiation is much simpler than that of Alg. 2. Both
algorithms are realized in our experiments.

3

M
ain

C
ontroller

Reg Reg Reg

Register Files
Reg

Control

...
Interconnection Networks

...

Arithmetic Logic Unit

Multiplier

F24min

C A.

Multiplier 1

F2min
Multiplier 2

F2min

in F2m in F2m

y2
in F2m

x2
in F2m

in F24mSquarer
Inverter

F2min

c2
in F2m

c2
in F2m

0

1

Squarer 1

Squarer 2

F22m

F22m

Shared components

Final exponentiation

Select

Operation outputs

Operation inputs

in

in

Accumulative multiplication

Fig. 1. Top architecture of the accelerator of Tate pairing over binary fields.

Top architecture: There are basically two kinds of struc-
tures. The first one is the traditional stored-program machine
(SPM), which contains three functional units: a processor,
a controller, and memory. The processor includes registers,
datapaths, control lines and ALU. The controller should be
capable of steering data to the proper destination according
to the instruction. The memory is used to store instructions
and data. To adopt such an architecture, the designer needs
to develop ALU according to the operations necessary for
pairing, and accordingly build the instruction set. Since the
intermediate operands of pairing are data-dependent and most
of the field operations cannot be completed in a single or small
number of clock cycles, it is not suitable to be pipelined.
Moreover, in program-directed operations, instructions are
synchronously fetched, decoded and executed, which will
reduce the operation speed of the accelerator of pairing be-
cause of the overhead of communication between memory
and the processor. Alternatively, the pairing processor can be
constructed via a main controller, interconnection networks,
register files and ALU. The controller may be designed as a
finite state machine (FSM), scheduling the computation tasks,
i.e., it can generate the stimulate signals and select signals
switching operands for ALU. The intermediate results will be
stored in the register files in order to eliminate the overhead
of communication between memory and ALU. We adopt the
second architecture, as shown in Fig. 1.

Parallelism and sharing resources: One advantage of
hardware implementation is that it supports parallel compu-
tations and provides high operation speed as long as multiple
operations can be performed at the same time. In the first
stage of both algorithms, the computations C · A and α · v
can be completed simultaneously. Additionally, in the second
stage of both algorithms, by multiplying the conjugates of the
elements in extension fields F24m and F22m , the inversion of
extension fields can be transformed into one inversion in F2m

and several multiplications in F2m , F22m and F24m . We use
one special extension field multiplier, namely CA in Fig. 1,

to perform the multiplications involved in both stages. The
multiplier CA can be optimized to obtain a compact design by
sharing some combinational circuits among several multipliers
in F2m in case of the same operand. The multiplier computing
α·v in the first stage performs multiplications in F2m involved
in final exponentiation as well.

Underlying field arithmetic: The underlying field F2m is
constructed via the low Hamming weight irreducible polyno-
mial, such as a trinomial or a pentanomial, by which reductions
become simple. Squarer should not be shared since the multi-
plexers introduced are more expensive. Multiplier is the most
significant component directly determining the performance of
the accelerator, so it is imperative to implement it with high
efficiency. Linear feedback shift register (LFSRs) structure
is adopted in our MSD-serial multipliers. The multiplicative
inversion in F2m is computed using Itoh-Tsujii algorithm
[21]. Since most intensive computations are performed in the
first stage, the multipliers inside the component CA and the
multiplier performing α · v should have large digit sizes to
achieve high operation speed. On the other hand, in order to
decrease the resource utilization without loss of performance,
the multipliers working only at the final exponentiation stage
can be relatively slow, with small digit size.

A. Design of Arithmetic Logic Unit

In the following section, we briefly review the traditional
technique computing squaring over the underlying field. Our
main interest is to compute the multiplications C ·A efficiently.
In particular, we propose a method optimizing individual
subfield multiplier to obtain a compact design of the extension
field multiplier CA. Furthermore, we present two schemes for
the multiplier CA in which a different number of multipliers
are used. These two schemes are ported to an FPGA device.
The optimal choices are made based on the product of la-
tency by area. Finally, the simplifying technique for the final
exponentiation in both algorithms is explained.

1) Squarer: Squaring an element a =
∑m−1

i=0 aix
i ∈ F2m ,

where ai ∈ F2, is given by the equation a2 =
∑m−1

i=0 aix
2i.

Since the underlying fields are constructed via irreducible
trinomials or pentanomials, by replacing xm with xk + 1 or
xk3 + xk2 + xk1 + 1, we can get the formulae for computing
the coefficients of a2. The circuit complexity in terms of gate
count is proportional to m. Squaring over the extension fields
F22m and F24m is relatively easy and can be decomposed into
several squarings in F2m .

2) Multiplier: Digit serial multiplier, allowing the trade-off
between timing and area, is more suitable for cryptographic
applications with large operand sizes. There are two basic
algorithms computing multiplications with polynomial basis
representation in F2m , left-to-right and right-to-left. It is
claimed that the first algorithm is superior in term of low power
[19]. Additionally, we find that fewer registers are needed
when using the first algorithm because only partial product
needs to be updated in each iteration apart from the shift-in
digits. However, both partial product and one operand must be
updated in each iteration when using the second one. Therefore

4

Fig. 2. Two digit serial multipliers in F2239 with D = 4 sharing the
component for

∑3
i=0 xib(x) mod f239(x).

we adopt the left-to-right algorithm to derive the digit-serial
multiplier.

Let a(x) and b(x) be the two operands of the multiplication
in F2m and let c(x) be the product. Let n = min{l |
l ∈ Z, l ≥ m, and D | l}. Let a′ =

∑n−1
i=0 a′

ix
i, where

a′
i = ai if 0 ≤ i ≤ m − 1, otherwise a′

i = 0. The multiplier
contains mainly two parts, XOR-AND arrays for computing
s(x) =

∑D−1
i=0 a′

n−D+ix
ib(x) mod fm(x) and LFSRs for

computing c(x) ← c(x) + s(x). There are two candidates
for the second part. The first approach is to compute xib(x)
mod fm(x) separately and the partial sum is kept in m bits.
For the second one, the partial sum is kept in m + D bits
before reduction. Even though fewer XOR gates are used in
the second structure for an individual multiplier, these XOR-
AND arrays cannot be shared among different multipliers in
F2m . Additionally, the wire density is increased significantly if
D is chosen large. On the contrary, the first approach is more
suitable to construct the extension field multiplier CA in F24m

considering that the XOR arrays for xib(x) mod fm(x) can be
shared among different multipliers in F2m in case they share
one operand, see Equation 5 and Fig. 2. The second advantage
is its low wire density which makes it easy for placing and
routing.

With the basis {1, s, t, st} of F24m over F2m , we may write
A = w+zs+et where w, z ∈ F2m and e ∈ F2. We set e = 1 in
the accumulative stage and e = 0 in the final exponentiation
stage. Let C = c0 + c1s + c2t + c3st, ci ∈ F2m , be the
partial product of C ← C · A. It it not suitable to apply
Karatsuba-Ofman algorithm directly to compute this extension
field multiplication recursively since more underlying field
multiplications would need to be calculated. However, we can
use the same idea to simplify the computations of coefficients

TABLE II

FPGA IMPLEMENTATION RESULTS FOR THE MULTIPLIERS CA OVER

F24×239 AND F24×283 .

Scheme 1: 6 multipliers adopted for F2239
D = 4 D = 8 D = 16

FF 3664(4%) 3664(4%) 3664(4%)
LUT 7799(8%) 13508(15%) 20744(23%))
CLB slices 4268(9%) 7094(16%) 10722(24%))
Clock period (ns) 9.61 9.98 9.99
Latency (ns) 576.6 299.4 149.9

Scheme 2: 3 multipliers adopted for F2239
D = 4 D = 8 D = 16

FF 2675(3%) 2675(3%) 2675(3%)
LUT 5580(6%) 8439(9%) 12075(13%)
CLB slices 3617(8%) 5331(12%) 7536(17%)
Clock period (ns) 9.86 9.98 9.76
Latency (ns) 1182.8 598.8 292.8

Scheme 1: 6 multipliers adopted for F2283
D = 4 D = 8 D = 16

FF 4324(4%) 4348(4%) 4348(4%)
LUT 9273(10%) 16060(18%) 24729(28%)
CLB slices 5070(11%) 8416(19%) 12856(29%)
Clock period (ns) 9.84 9.98 9.99
Latency (ns) 698.6 359.3 179.8

Scheme 2: 3 multipliers adopted for F2283
D = 4 D = 8 D = 16

FF 3159(3%) 3171(3%) 3171(3%)
LUT 6632(7%) 10031(11%) 14428(16%)
CLB slices 3046(6%) 4483(10%) 6306(14%)
Clock period (ns) 8.89 9.99 9.98
Latency (ns) 1262.4 719.3 359.3

c′1 and c′3 (see Equation 5).

C · (w + zs + et) = (c0 + c1s + c2t + c3st)(w + zs + et)
= c′0 + c′1s + c′2t + c′3st,

(4)

where

c′0 = c0w + c1z + ec3

c′1 = (c0 + c1)(w + z) + c0w + e(c2 + c3)
c′2 = c2w + c3z + e(c0 + c2)
c′3 = (c2 + c3)(w + z) + c2w + e(c1 + c3) (5)

Therefore, it takes only 6 F2m-multiplications for the com-
putation of C · A, and all these 6 multiplications can be
done simultaneously if 6 multipliers in F2m are adopted.
Alternatively, if 3 multipliers are adopted in case of limited
resources, the computation of C ·A will take two multiplication
rounds. In the first round, the first two coefficients of the
product, namely c′0 and c′1, will be computed and stored in
the registers. In the second round, the other two coefficients,
namely c′2 and c′3, will be computed. To get the optimal choice
in terms of low product of latency by area, both schemes of
the special multipliers CA over F24×239 and F24×283 are ported
to the same FPGA device, Xilinx XC2VP100-6FF-1704. The
optimization goal is speed instead of area. Second, the hierar-
chy is not kept so that registers and XOR arrays can be saved
considering that several underlying field multiplications share
the same operands. Comparisons in terms of timing and area
are demonstrated in Table II.

According to Table II, Scheme 1 is always superior in
terms of low product of latency by area. Hence we adopt 6

5

multipliers in the extension field multiplier CA for our pairing
accelerator so that the multiplication C · A can be completed
in one underlying field multiplication round.

3) Inverter: The inversion in F24m involved in the final
exponentiation can be transformed into one inversion in F2m

and several multiplications in F2m (the transforming procedure
is explained in details in Sec. V-B). Therefore, we only need
to implement one inverter in F2m . Itoh-Tsujii’s algorithm is
adopted in our realizations. It takes

	log2(m − 1)
 + HW (m − 1) − 1 (6)

multiplications in F2m to complete one inversion, where
HW (m − 1) denotes the Hamming weight of m − 1.

B. Simplifying the Data-path for the Final Exponentiation

Let C = C1 + C2t with C1, C2 ∈ F22m . Using subfield
arithmetic and repeated norm calculations, we may compute
C22m−1. Letting C2

1 + C1C2 + C2
2s = c0 + c1s with c0, c1 ∈

F2m , a straight calculation shows

C22m−1 =
1

c2
0 + c0c1 + c2

1

· (c0 + c1(s + 1))·
(C2

1 + C2
2 (1 + s) + C2

2 t),

where the total cost of the above computations is 1 F2m-
inversion plus 12 F2m-multiplications. That is, we need 4 F2m-
multiplications (1 F22m-multiplication for C1C2 and 1 F2m-
multiplication for c0c1) for the denominator c2

0 + c0c1 + c2
1,

2 F2m-multiplications for 1
c2
0+c0c1+c2

1
· (c0 + c1(s + 1)), and

6 F2m -multiplications (2 F22m-multiplications) which come
from the final multiplication by C2

1 + C2
2 (1 + s) + C2

2 t.
Therefore only six multiplication units (for parallel processing)
are needed here and one can reuse the same arithmetic units
as shown in Fig. 3 for multiplications, and thus the additional
cost of the final exponentiation is the inversion circuit for
computing 1

c2
0+c0c1+c2

1
.

In Algorithm 2, we have more complicated final exponen-
tiation, where M = 24m−1

|Eb(F2m)| = 24m−1

2m±2
m+1

2 +1

= (22m − 1)(2m ∓ 2
m+1

2 + 1) and T = 2
m+1

2 ± 1. Here we
should be cautious about appropriate sign of T . The original
definition of T [9] is T = 2m − N = ∓2

m+1
2 − 1. However

when T = −2
m+1

2 − 1, one computes (−T){(P) − (O))}
which gives an inverse of the rational function corresponding
to T{(P)−(O))}, so the exponents should be changed to −T
in this case. Suppose z is in GF (24m) such that z = w22m−1

for some w ∈ F24m . Then z22m+1 = w24m−1 = 1 and
thus we get z−1 = z22m

. Moreover from 1 = z22m+1 =
z(2m+1+2

m+1
2)(2m+1−2

m+1
2), we get

z(2m+1+2
m+1

2)(2
m+1

2 −1) = z(2m+1+2
m+1

2)2m

Therefore the exponent MT can be interpreted as:

MT = (22m − 1)(2m + 2
m+1

2 + 1)(2
m+1

2 − 1)

= (22m − 1)(2m + 2
m+1

2 + 1)2m (7)

C. Parameter Choices for ALU

In Fig. 3, we provide the timing diagram of scheduling
computations for pairing according to Algorithm 1. Additions
and squarings realized via combinational circuits need not to
be taken into account for estimating the latency.

Let Δ1 denote the latency for one computation of Tate
pairing using Alg. 1 and let Tclk denote the clock period.
Let D1 denote the digit size of multipliers inside CA and
Multiplier 1; D2 denote the size of Multiplier 2; and D3 denote
the digit size of multiplier inside the inverter. The notations
of T1, T2, T3 are specified in Fig. 3. Then we can estimate
the latency for computing one Tate pairing using Alg. 1 as
follows:

Δ1 = (m + 2)(T1 + 2) + 3T2 + T3 + 8 (8)

where T1 = �m/D1�Tclk, T2 = �m/D2�Tclk. Two extra clock
cycles are required for the register read/write operations. In
case of F2239 , it takes around 239 clock cycles for exponen-
tiation and 12 multiplications in case of computing c2 each
cycle. However the latency for exponentiation needs to be
shortened. We compute c24

in each cycle so that 60 cycles
are necessary to complete the exponentiation in the inversion
of F2239 . Then T3 ≈ (60+12 ·�239/D3�)Tclk. Similarly T3 ≈
(71 + 11 · �283/D3�)Tclk for F2283 . If we choose D1 = 16,
D2 = 4 and D3 = 8, the time spent on final exponentiation is
10.3% of accumulative multiplications. However if we choose
D3 = 4 and keep the same value of D1 and D2, the time for
final exponentiation is 23.8% of accumulative multiplication.
So we choose D1 : D2 : D3 = 4 : 1 : 2 for both F2239 and
F2283 .

For Alg. 2, the computation of CMT needs to be addition-
ally taken into account for latency estimation, see Equation
7. We use the component computing C24

each cycle for
the extension field exponentiation, and one extension field
multiplication with two operands in F24m can be completed by
CA in two underlying field multiplication rounds. Then, we
use the following equation to estimate the latency of pairing
for Alg. 2,

Δ2 =
m + 5

2
(T1 + 2) + 3T2 + T3 + T4 + 8;

T4 =
m + 1

2
Tclk + 4(T1 + 2) (9)

where T4 denotes the latency for CMT . We use the same ratio
of D1, D2 and D3 as Alg. 1.

D. Results and Comparisons with Previous Work

The target device for our implementations is Xilinx
XC2VP100-6FF-1704. For Alg. 1, the digit size of multipliers
inside CA is chosen as 16 and 32 for both F2239 and F2283 .
For Alg. 2, due to the limitation of resources, the digit size D1

is chosen as 16. Our FPGA accelerators have been fully tested
via the bilinear test-vectors generated by LiDIA. The results
after placing and routing via Xilinx ISE-7.1 are summarized
in Table III. Compared with software implementations, our
FPGA accelerator can run 150-to-300 times faster.

6

Fig. 3. Timing diagram of pairing computations according to Alg. 1.

TABLE III

PERFORMANCE AND COST OF TATE PAIRING ACCELERATORS ON ELLIPTIC CURVES OVER F2239 AND F2283 .

FF # LUT # CLB slices f (MHz) Latency Speedup
(μs) over software

Alg. 1

F2239 , D1 = 16 10,981 (12%) 34,499 (12%) 18,202 (41%) 100 55 196
F2239 , D1 = 32 11,077 (12%) 59,971 (68%) 31,719 (71%) 83 43 251
F2283 , D1 = 16 12,995 (14%) 42,997 (48%) 22,726 (51%) 84 87 208
F2283 , D1 = 32 13,007 (14%) 72,961 (82%) 37,803 (85%) 72 61 297

Alg. 2
F2239 , D1 = 16 14,226 (16%) 48,895 (55%) 25,487 (57%) 84 41 183
F2283 , D1 = 16 16,563 (18%) 64,845 (73%) 33,252 (75%) 56 78 156

TABLE IV

COMPARISON WITH EARLIER FPGA IMPLEMENTATIONS.

Curves Underlying MOV Xilinx Controller # CLB Digit f(MHz) Latency
fields Security FPGA device slices size D (μs)

[1] Elliptic F397 922 XC2VP125 Hardwired logic 55,616 4 10 850

[3] Elliptic F397 922 XC2VP4FF672 Microprocessor 4,481 4 150 432

[4] Hyperelliptic F2103 1236 XC2VP125 Hardwired logic 43,986 16 32 749

Alg. 2 Elliptic F2239 956 XC2VP100 Hardwired logic 25,287 16 84 41

Alg. 1 Elliptic F2283 1132 XC2VP100 Hardwired logic 37,803 32 72 61

If the digit sizes are chosen the same for both algorithms,
the latency of Alg. 2 is shorter than Alg. 1. However more
resources are utilized for Alg. 2 because the multiple squarers
in F24m are adopted for CMT and more complicated datapath
in final exponentiation cannot be avoided so that the critical
path is longer than Algorithm 1.

Compared with other researchers’ works [1], [3], [4], al-
most at the same level of security strength, our Tate pairing
accelerators can run 10-to-20 times as fast as theirs on
average with smaller product of latency by area. See Table
IV, where D denotes the digit size of multipliers working
in the accumulative stage. In [1], the pairing accelerator for
the elliptic curve over F397 with k = 6 is realized via a

larger FPGA device, Xilinx XC2VP125 with 55,616 slices.
Karatsuba-Ofman’s method is used to construct the multiplier
in F36m . To achieve the full power of parallel computation for
such a large extension field multiplication, 18 multipliers in
F3m are necessary. Due to the limitation of resources, the digit
sizes of underlying field multipliers cannot be large, so D = 4
is selected. The cost is 60% of 55616 slices for the multiplier
in F36×97 . For comparison it costs only 10,722 slices for our
multiplier CA in F24×239 , where D = 16. No exact results
for the whole accelerator of pairing are provided in [1], but it
is claimed that 100% of resources are utilized. So the cost is
around 55,616 CLB slices. The operation frequency is 10MHz
and it takes 850 μs for one pairing. Our pairing accelerator

7

on the elliptic curve over F2239 can run 20 times faster.
In [3], a smaller device, Xilinx XC2VP4FF672-6 with

4928 slices is chosen as the target device. The cubic field
arithmetic is realized as an FPGA-based co-processor, which
is controlled by a general-purpose processor, i.e., the top
architecture is a stored-program machine (SPM), as described
previously. The field arithmetic co-processor contains only
one polynomial basis multiplier with digit size D = 4, so
that multiplications are performed sequentially, i.e., at least 18
subfield multiplication rounds are necessary for each iteration
of the accumulative multiplication. In contrast, our processor
supports parallel computation of multiplications in F2m and
the digit sizes we used are much larger than the ones in [3].
The latency for one pairing of our accelerator over F2239 is
only 41 μs. The latency of the design by Grabher et al. [3] is
at least 432 μs. At the same time, our resource utilization is
only 5 times larger as theirs.

Ronan et al. [4] have implemented Tate pairing accelerator
on the hyperelliptic curve over binary field using the device
Xilinx XC2VP125, which is the same as the one used in
[1]. A smaller underlying field F2103 and a larger embedding
degree k = 12 are selected. However, in each iteration of
accumulative multiplication stage, 16 multiplications in F2m

and 1 multiplication in F212m need to be computed. These
16 subfield multiplications must be completed before the
accumulative multiplication in F212m . Note that, in [4], one
multiplication in F212m is realized as 54 multiplications in
F2m using Karatsuba’s method. In our case, we choose a larger
underlying field F2283 and smaller embedding degree k = 4, so
that the computation of accumulative multiplications becomes
much simpler. Only 7 multiplications in F2m are involved each
round and these multiplications can be performed in parallel.
The shortest latency for one pairing of Ronan et al’s is 749 μs
and 43,986 slices are used. Our accelerator can run 12 times
faster, whereas the resource utilization is only 37,803 slices,
see Table IV.

VI. CONCLUSIONS

We investigated the FPGA implementations of the Tate
pairing on supersingular elliptic curves over binary fields with
embedding degree k = 4. We adopted two top algorithms com-
puting pairing, by which full power of parallel computations
can be exploited with less resource utilization than in designs
of other researchers. We chose two binary fields F2239 and
F2283 for our experiments to achieve almost the same security
strength as others. Besides the superiority of top algorithms,
we also proposed an optimization method to obtain a compact
design of the extension field multiplier CA by sharing some
combinational circuits among several individual subfield mul-
tipliers in F2m in case of one shared operand. Furthermore we
compared two schemes with a different number of multipliers
in F2m for CA to get the optimal choice. The controller is
implemented via hardwired logic to eliminate the overhead of
instruction fetching and decoding, particularly for the simple
operations such as additions and squarings. The technique
simplifying the final exponentiations for both algorithms are

addressed. Finally, the implementations are further optimized
by optimal parameter choices for ALU. Compared with pre-
viously reported implementations, our pairing processors are
more efficient in terms of the product of latency by area.
Additionally, our accelerators can outperform earlier designs
by a factor of 10-to-20 in terms of the total execution time.

REFERENCES

[1] T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto, “Efficient
hardware for the Tate pairing calculation in charateristic Three,” CHES
2005, Lecture Notes in Computer Science, LNCS 3659, pp. 412–426 ,
2005.

[2] T. Kerins, E.M. Popovici, and W.P. Marnane, “Algorithms and architec-
tures for use in FPGA implementations of Identity Based Encryption
Schemes. In Field Programmable Logic and Applications - FPL 2004
volume 3203 of Lecture Notes in Computer Science, pp. 74-83, Springer-
Verlag 2004.

[3] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in
charateristic three”, CHES 2005, Lecture Notes in Computer Science,
LNCS 3659, pp. 398 - 411.

[4] R. Ronan, C.O. Eigeartaigh, C. Murphy, M. Scott, T. Kerins, and W.P.
Marnane, A dedicated processor for the Eta pairing, Cryptology ePrint
Archive, http://eprint.iacr.org/2005/330.pdf.

[5] R. Granger, D. Page, and M. Stam, “Hardware and software normal
basis arithmetic for pairing based cryptography in characteristic three,”
preprint, available at http://eprint.iacr.org/ 2004/157.pdf, 2004.

[6] R. Granger, D. Page, and M. Stam, “On small characteristic al-
gebraic tori in pairing based cryptography,” preprint available at
http://eprint.iacr.org/2004/132.pdf, 2004.

[7] I. Duursma and H. Lee, “Tate pairing implementation for hyperelliptic
curves y2 = xp − x + d,” Asiacrypt 2003, Lecture Notes in Computer
Science, vol. 2894, pp. 111–123, 2003.

[8] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for
pairing based cryptosystems,” Crypto 2002, Lecture Notes in Computer
Science, vol. 2442, pp. 354–368, 2002.

[9] P. Barreto, S. Galbraith, C. OhEigeartaigh, and M. Scott, “Efficient pair-
ing computation on supersingular abelian varieties,” preprint available
at http://eprint.iacr.org/2004/375.pdf, 2004.

[10] S. Kwon, “Efficient Tate pairing computation for supersingular
elliptic curves over binary fields,” preprint available at
http://eprint.iacr.org/2004/303.pdf, 2004.

[11] S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate
pairing,” ANTS 2002, Lecture Notes in Computer Science, vol. 2369,
pp. 324–337, 2002.

[12] V. Miller, “Short programs for functions on curves,” unpublished
manuscript, 1986.

[13] A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Aca-
demic Publisher, 1993.

[14] A. Shamir, “Identity-based cryptosystems and signature schemes,”
Crypto 1985, Lecture Notes in Computer Science, vol. 196, pp. 47–53,
1985.

[15] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field inversion
and point halving revisited,” Technical Report CORR 2003-18, Univ. of
Waterloo, 2003.

[16] D. Boneh and M. Franklin, “Identity based encryption from the Weil
pairing,” Crypto 2001, Lecture Notes in Computer Science, vol. 2139,
pp. 213–229, 2001.

[17] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on
pairing,” SICS 2000, Symposium on Cryptography and Information
Security, pp. 26–28, 2000.

[18] A. Karatsuba and Y. Ofman, “Multiplication on many-digit numbers by
automatic computers”, Translation in Physics-Doklady, vol 7, pp. 595-
596, 1963.

[19] L. Song and K.K. Parhi, Efficient Finite Field Serial/Parallel Multipli-
cation, Proceedings of International Conference on Application Specific
Systems, Achitectures and Processors - ASAP’96, pp. 72-82, 1996.

[20] LiDIA, A C++ Library For Computational Number Theory, available at
http://www.informatik.tu-darmstadt.de/TI/LiDIA.

[21] T. Itoh, and S. Tsujii, A fast algorithm for computing multiplicative
inverses in GF (2m) using normal bases. Information and Computation,
Volume 78, Papers 171-177, 1988.

8

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
