FPGA Accelerated Tate Pairing Cryptosystems over Binary Fields

Chang Shu¹, Soonhak Kwon², and Kris Gaj¹

 ¹ Dept. of ECE, George Mason University Fairfax VA, USA
 ² Dept. of Mathematics, Sungkyukwan University Suwon, Korea

Overview

- Introduction
 - Identity based encryption (IBE) scheme
 - Pairing based cryptography
- FPGA implementations
 - Algorithms
 - Architectures
 - Timing diagram
 - Results
- Comparison with software
- Comparison with previous work for comparable schemes
- Conclusions

Identity Based Encryption Scheme

Notations			
ТА	trust authority		
Р _{ТА}	TA's public key		
S	TA's private key		
ID(Bob)	Bob's identity		
S _{ID(Bob)}	Bob's private key		
М	Message		
С	Cipher text		
E	Encryption		
D	Decryption		

Features of IBE:

- 1. Use the receiver's ID as a public key for encryption
- 2. A third trust authority party is involved in generating the receiver's private key associated with one's ID.

Pairing Based Cryptography (1)

- Pairing is a map between groups, where $e: G_1 \times G_1 \rightarrow G_2$, $G_1 = E(F_q)$ and $G_2 = F_{qk}$
- The most important property of this map is bilinearity
 e(aP, bQ) = e(P, Q)^{ab}

a, b: integers

P,Q: points on elliptic curves

• In practice, Tate or Weil pairing are used.

Pairing Based Cryptography (2)

Two Selected Algorithms (1)

Algorithm 1:

Input: $P = (x, y), Q = (\alpha, \beta)$ $x, y, \alpha, \beta \in F_{2^m}$ Output: $C = \tau(P,Q)$, where $C \in F_{2^{4m}}$ $C \leftarrow 1$. $\alpha \leftarrow \alpha^4, \ \beta \leftarrow \beta^4, \ v \leftarrow x^2 + 1, \ \theta \leftarrow \alpha \cdot v$ $u \leftarrow x^2 + y^2 + b + \frac{m-1}{2}$ for i=0 to **m-1** do $A \leftarrow \beta + \theta + u + (\alpha + v)s + t$ Accumulative $C \leftarrow C^2$ multiplication $C \leftarrow C \cdot A$ $\alpha \leftarrow \alpha^4, \ \beta \leftarrow \beta^4, \ u \leftarrow u + v,$ $v \leftarrow v + 1, \theta \leftarrow \alpha \cdot v$ Final end for powering $C \leftarrow C^{2^{2^m-1}}$

Algorithm 2:

```
Input: P = (x, y), Q = (\alpha, \beta)
                 x, y, \alpha, \beta \in F_{am}
   Output: C = \tau(P,Q), where C \in F_{2^{4m}}
          C \leftarrow 1, \alpha \leftarrow \alpha^2 + 1, \beta \leftarrow \beta^2 + 1.
          u \leftarrow y + b + 1, \theta \leftarrow \alpha \cdot y
   for i=0 to (m-1)/2 do
             C \leftarrow C^2, C \leftarrow C \cdot A
             if i<(m-1)2 then
                  \alpha \leftarrow \alpha^4, \ \beta \leftarrow \beta^4, \ u \leftarrow u + v + 1,
                  v \leftarrow v + 1, \quad \theta \leftarrow \alpha \cdot v
             end if
l end for
  A \leftarrow A + (\alpha^2 + v + 1) + s
  C \leftarrow C \cdot A
  C \leftarrow C^{MT}, MT = (2^{2m} - 1)(2^m \mp 2^{\frac{m+1}{2}} + 1)(2^{\frac{m+1}{2}} \pm 1)
```

Two Selected Algorithms (2)

- Two main stages: accumulative multiplication and final powering
- Only 7 underlying field multiplications are needed in each iteration for both algorithms
- All these multiplications can be completed simultaneously.
- Half iterations can be saved when using Algorithm 2, however the computation for final powering is much easier for Algorithm 1.
- In our work, we use polynomial basis for both algorithms, and we choose $F_{2^{239}}$ and $F_{2^{283}}$ for our single FPGA implementations

Top Architecture of Pairing Processor

Features:

- Hardwired logic instead of stored-programmed machine
- Iterative structure
- Register files for intermediate results
- Main controller designed as a finite state machine
- The extension field
 multiplier CA and
 Multiplier 1 are working
 for both stages

Two Possible Architectures for CA

6 *multipliers*:

- 1. lower latency
- 2. larger area
- 3. lower product of latency by area

3 multipliers:

- 1. higher latency
- 2. smaller area
- 3. higher product of latency by area

Timing Diagram for Algorithm 1

Timing Diagram for Algorithm 2

Timing Diagrams

- The large extension field multiplier CA works for both stages, and two different sources of data
- Multiplier 1 also works for both stages
- Compared with CA and Multiplier 1, Multiplier 2 has smaller digit size.
- Only one subfield inversion is needed
- Compared with Algorithm1, one half of iterations can be saved for Algorithm 2, however more multiplications and squares are involved.
- For Algorithm 2, CA has 4 different sources of data, i.e., more levels of multiplexers are used.

Speed-up over Software

Software Platform: Intel Xeon 2.8 GHz; C++ library, LiDIA, for subfield arithmetic

Hardware Platform: Xilinx XC2VP100-6FF-1704

Comparison with Hardware Implementation of Comparable Schemes (1)

Comparable Schemes

	Binary elliptic (our scheme)	Cubic elliptic	Binary hyper-elliptic
Field			
F _q	q = 2 ^m	q = 3 ^m	q = 2 ^m
Curve	elliptic	elliptic	hyper-elliptic
Embedded Degree, k	4	6	12

Comparison with Hardware Implementation of Comparable Schemes (2)

	Field F _q	MOV Security	
Binary elliptic	0		4 m
	$q = 2^m$	k∙m	
Binary hyper-			12 m
elliptic			
Cubic elliptic	q = 3 ^m	k∙(log₂3)∙m	9.5 m

Comparison with Hardware Implementation of Comparable Schemes (3)

Comparison with Hardware Implementation of Comparable Schemes (4)

Conclusions

- First FPGA implementation of the Tate pairing schemes for binary elliptic curves.
- Two algorithms improved, implemented and compared
- Algorithm 2 is faster, but its implementation takes more area
- Speed-ups in the range 150-300 demonstrated for Xilinx XC2VP100 vs. Xeon 2.8 GHz
- Our designs outperform existing implementation of comparable schemes in terms of the execution time by a factor 10-20, the product of latency by area by a factor 12-46.