FPGA Accelerated Tate Pairing
Cryptosystems over Binary Fields

Chang Shul, Soonhak Kwon?, and Kris Gaj?!

1 Dept. of ECE, George Mason University
Fairfax VA, USA
2 Dept. of Mathematics, Sungkyukwan University
Suwon, Korea

Overview

Introduction
— ldentity based encryption (IBE) scheme
— Pairing based cryptography

FPGA implementations

— Algorithms

— Architectures

— Timing diagram

— Results

Comparison with software

Comparison with previous work for comparable schemes

Conclusions .

ldentity Based Encryption Scheme

generated by

Trust Authority TA

during registration

o T

ID(Bob) Pq4

v — E

Alice

Features of IBE:

1. Use the receiver’s ID as a public key for encryption

SID(Bob)

Bob

Notations
TA trust authority
PTA TA'’s public key
S TA’s private key
ID(Bob) Bob’s identity
SID(Bob) Bob’s private key
M Message
C Cipher text
E Encryption
D Decryption

2. A third trust authority party is involved in generating the receiver’s private

key associated with one’s ID.

Pairing Based Cryptography (1)

e Pairing is a map between groups,
where e: G, x G, » G,, G, =E(F;)and G, = F

 The most important property of this map is
bilinearity ¢ap, pQ) = e(P, Q)2

VR

a, b: integers P,Q: points on elliptic curves

* |n practice, Tate or Well pairing are used.

Pairing Based Cryptography (2)

ID(Bob)

|

Hy

PID(Bob)

l

| e |

rpP

M—P

Encryption

Trusted Authority

Pra

C

ID(Bob)

S|p(Bob)

Bob

A 4

C=U,V)=(P, M+ Hz(e(PID(Bob)’ Pra)’)
M=(V+ Hz(e(le(Bob)' U))

Decryption

_>M

S: secret value

P: public value

Pia=sP
public key of TA

Pipsony= H1(ID(Bob))
Bob’s public key

SID(Bob):_S Pib@ob)
Bob’s private key

r: random number

By bilinearity, e(SID(Bob’ U) = e(SPID(Bob)’ P) = e(PID(Bob)' sP) = e(PID(Bob) , Pa)f

Two Selected Algorithms (1)

Algorithm 1.

Input: P=(Xx,y),Q=(c,B)
X, y,a,p ek,
Output: C=7(P,Q), where CeF,,
C<«1,
a<—a’, B Bhve x2+1, 0« a-v

m-1
U X +y* +b+r—=

tive
on

for i=0 to m-1 do)
A +0+u+(a+V)s+t
C C2 >Accqmula
CeC. A multiplicat
a<—a’, B« pB% u«u+yv,
Ve<V+1L 0« a-v)
end for Final
C CcZ™1 ¥ powerir

J

Algorithm 2:

Input: P=(x,y),Q=(a,p)
X, y,a,p ek,
Output: C=7(P,Q), where CeF,,
Cela«—a’+18« B*+1,

U« VY+b+1, 090« ag-v

(for i=0 to (m-1)/2 do

C«C*’C«C-A

if i<(m-1)2 then
a<a', BBt u—u+v+],
Ve<V+l O« a-v

end if

\ end for

(A Ar(@?+v+D+s

C«C-A m+l m+l

C<CM, MT=(2*"-D(2"F2 2 +1)(2 2 +])

~

6

Two Selected Algorithms (2)

Two main stages: accumulative multiplication and final powering

Only 7 underlying field multiplications are needed in each iteration
for both algorithms

All these multiplications can be completed simultaneously.

Half iterations can be saved when using Algorithm 2, however the
computation for final powering is much easier for Algorithm 1.

In our work, we use polynomial basis for both algorithms, and we
choose F,»and F . for our single FPGA implementations

Top Architecture of Pairing Processor

19]|01U0D Ule\

Operation outputs {}

A
\J

Register Files

“"‘ | Reg | | Reg | | Reg | :
|
I X
M - {} ~Interconnection Networks {} R
| > \ \ \ \ \ | D
[e e . .
. iy 1L ! L Operation inputs
Cont
OP | © Arithmetic Logic Unit
\‘ | Accumulative multiplication Final exponentiation
\ - o -
1|
| ad B4) C2 Squarer 1
| . . i .0
- | o | inFom inFom MULRIer | in Fam | in Fp2m
X2 y2 in Fodm C2 Squarer 2
in Fom| | in Fom in Foam | in Fo2m
. Multiplier 1 Multiplier 2 | |Inverter
Squarerin Fo4m in Fom in Fom in Fom
Sharéa?ompgﬁents

Features:

e Hardwired logic instead
of stored-programmed
machine

. Iterative structure

* Register files for
intermediate results

. Main controller
designed as a finite
state machine

 The extension field
multiplier CA and
Multiplier 1 are working
for both stages

Two Possible Architectures for CA

w Co Ci z Co Ci1 C2 Cs
mul 1 mul 2 mul 3 l
in F,m in Fym n Fym -
’ : ’ sel sel — sel|= B
€ (® CO l l
(o (of} mul_1 mul_2 mul_3
P o) in Fym in Fym n Fymy
”ID Cs)
‘ * (o)
mul_4 mul_5 mul_6 Y
in FZm in F2m T in Fzm ?
b= en [Re | en [Ra
.. Tk " " " "
CH C3 Co C1 C2 Cs
6 multipliers: 3 multipliers:
1. lower latency 1. higher latency
2. larger area 2. smaller area

3. lower product of latency by area 3. higher product of latency by area

Timing Diagram for Algorithm 1

Initialization of @

Storing results to Registers
MUL 1 I

MUL 1 i CA
:
: 1
5 a~v MULl MUL 1

H— mtimes ——————P»| MUL 2 o
LIJ

| “

A- B : Multiplication over F22m

Notations:

T1: Latency of CA and Multiplier 1
T2: Latency of Multiplier 2

T3: Latency of Inverter

MUL 1 : Multiplier 1

MUL 2 : Multiplier 2

C A: Special multiplier over F,4m
INV : Inverter

(st
C2+CyC, +CF

UL 2
Accumulative multiplications g \ MULl \

mv\ N

Co Cl

C2+CyC +C +cocl+cl

MUL 1 (D

éFinaI equnent|at|on§

o: T+2 (M+)(T +2) (M+Y(T,+2)+T,+2 (M+2)(T,+2)+2(T,+2)

see s

start (M+L(T, +2) +2(T, +2)

(m+2)(T,+2)+ 2T, +T,+6 done

|

(m+3)(T,+2)+31,+T,+8
Time

(clock cycles)

10

Timing Diagram for Algorithm 2

Initialization of @

Storing results to Registers
MUL 1 I

A- B : Multiplication over Fy2m

Notations:

T1: Latency of CA and Multiplier 1
T2: Latency of Multiplier 2

T3: Latency of Inverter

MUL 1 : Multiplier 1

MUL 2 : Multiplier 2

C A : Special multiplier over F24m

/—/\ INV : Inverter
MUL1
(m+1)/2 times 4» 1
S (@ o (s D)
’ m ©rear C*\
Accumulative multiplications | muL 1 \ nv |
]
e 1 2 2 .
4+,]

Final exponentiation

v

| -
>
mry ce e
0: T,+2 M3 TR Mg HHZMHLT i e
+ + + + e

start M T+ 22T, +2) I B Time

N (clock cycles)
-

Multiple Squaring

‘ ‘ Multiple Squaring ‘
‘ Multiple Squaring

o |
| ©) ®
® 3 2 2 3
- (meATok & ca Lea B[l ca [[H] ca |
@ (M+1)/8 Tck —]
|« (m+1)/8 Tck —]
T ; S S SN N .
%ﬁ T, +2)+3T,+T,+8 done
Final exponentiation
m+1 11
T, = T,+4T, +2) >

A

Timing Diagrams
The large extension field multiplier CA works for both stages, and
two different sources of data

Multiplier 1 also works for both stages

Compared with CA and Multiplier 1, Multiplier 2 has smaller digit
size.

Only one subfield inversion is needed

Compared with Algorithm1, one half of iterations can be saved for
Algorithm 2, however more multiplications and squares are involved.

For Algorithm 2, CA has 4 different sources of data, i.e., more levels
of multiplexers are used.

12

CLB slices

Implementation Results for GF(2239)

4

Target device: Xilinx XC2CP100-6FF-1704

35,

251

1.5

x 10

.
heS *
. “
.
. » *
* . .
. . .
0' — *»
. — % =
. N O
‘e >
. .
. .,
'- o,
““
0

Algorithm 1

. D=32
Lower product

of latency by area

Algorif'h[n 2

.
*»
o,
s

. o,
*» ‘o,

*»

\.. ",.
“ beq
N e “,
*, « S
s,
.
*,

Algorithm-1-...
D=16 T,

C
aa
«
[
*s,
"o
e,
.
""""
a
......
........
. .

.
.
s,
.,
=
0
.,
0

e
tee,
*

.
\ \ e \ [P, J

30

35

46 45 50 55 60 65 70 75 éO 85
Latency (us)

13

CLB slices

Implementation Results for GF(2283)

Target Device: Xilinx XC2VP100-6FF-1704

x 10"
4
38 - - ‘e |
AlgGtithm 1. |
3.6 gD:'BZ ~. Algorithm 2
., D=16
3.4 - -
u Lower product
32 - »...0f latency by area
3 L
28 - S e
26 S e e .
24 - e
Algorithm™ ..
22 D=16 T :
2 9 | s T
50 60 70 80 90 100

Latency (us)

14

Speed-up over Software

Software Platform: Intel Xeon 2.8 GHz; C++ library,
LIDIA, for subfield arithmetic

Hardware Platform: Xilinx XC2VP100-6FF-1704

Speed-up

350

300

250

200

150

100

50

0

Algorithm 1, D = 32 Algorithm 2, D =16
B 297
I 251
i 183
156
GF(2%%%) GF(2283) GF(22%) GF(22%3)

15

Comparison with Hardware Implementation
of Comparable Schemes (1)

Comparable Schemes

Binary elliptic Cubic Binary
(our scheme) elliptic hyper-elliptic
Field
X q=2" q=3m q=2m
Curve elliptic elliptic hyper-elliptic
Embedded
Degree, k 4 6 12

16

Comparison with Hardware Implementation
of Comparable Schemes (2)

MOV Security
Elliptic Curve Discrete Discrete Logarithm
Logarithm Problem)= — — = = = = = = = = = — - > Problem over GF(q¥)
Over E(GF(q)) Menezes-Okamoto-Vanstone
algorithm
Field F, MOV Security
Binary elliptic 4m
q=2m K-m
Binary hyper- 12 m
elliptic
Cubic elliptic g=3" k-(log,3)-m 9.5m

17

CLB slices

Comparison with Hardware Implementation
of Comparable Schemes (3)

Latency (us)

8x104
Our Kerin = Grabher
7 Alg. 2
Curves Elliptic | Elliptic | Elliptic
6/ Kerin
50 Fields GF(22%) GF(3%) | GF(3%)
art T .
MOV 956 922 922
3l Lower product of Security
latency by area
FPGA XC2VP | XC2VP | XC2VP4

2) Device 100 125 FF672
1r Grabher Controller | Hard Hard Micropr

..................... — wired wired ocessor
0 | D ‘ ...‘.'.'.'.'.':.'.'.'.':::::.'.'::‘:::::::::::::::::::::3::::::::::::::::: |OgiC Iogic
0 200 400 600 800 1000 1200

18

CLB slices

Comparison with Hardware Implementation
of Comparable Schemes (4)

3 x 10
K Alg. 1 Ronan
7r i
: a Curves Elliptic Hyper-
6 i] elliptic
5F . 4 | Fields GF(2283) GF(2103)
: “y Ronan
® Our Alg. 1 MOV 1132 1236
3! : | | Security
Lower product of FPGA XC2VP XC2VP
2+ latency by area 1 | Device 100 125
1 1 | Controller | Hardwired | Hardwired
logic logic
0 200 400 600 800 1000 1200

Latency (us) 19

Conclusions

First FPGA implementation of the Tate pairing schemes for
binary elliptic curves.

Two algorithms improved, implemented and compared
Algorithm 2 is faster, but its implementation takes more area

Speed-ups in the range 150-300 demonstrated for Xilinx
XC2VP100 vs. Xeon 2.8 GHz

Our designs outperform existing implementation of
comparable schemes in terms of the execution time by a
factor 10-20, the product of latency by area by a factor 12-46.

20

