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ldentity Based Encryption Scheme
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Features of IBE:

1. Use the receiver’s ID as a public key for encryption

SID(Bob)

Bob

Notations
TA trust authority
PTA TA'’s public key
S TA’s private key
ID(Bob) Bob’s identity
SID(Bob) Bob’s private key
M Message
C Cipher text
E Encryption
D Decryption

2. A third trust authority party is involved in generating the receiver’s private

key associated with one’s ID.




Pairing Based Cryptography (1)

e Pairing is a map between groups,
where e: G, x G, » G,, G, =E(F;)and G, = F

 The most important property of this map is
bilinearity ¢ap, pQ) = e(P, Q)2

VR

a, b: integers P,Q: points on elliptic curves

* |n practice, Tate or Well pairing are used.



Pairing Based Cryptography (2)
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C=U,V)=(P, M+ Hz(e(PID(Bob)’ Pra)’)
M=(V+ Hz(e(le(Bob)' U))

Decryption

_>M

S: secret value

P: public value

Pia=sP
public key of TA

Pipsony= H1(ID(Bob))
Bob’s public key

SID(Bob):_S Pib@ob)
Bob’s private key

r: random number

By bilinearity, e(SID(Bob’ U) = e(SPID(Bob)’ P) = e(PID(Bob)' sP) = e(PID(Bob) , Pa)f



Two Selected Algorithms (1)

Algorithm 1.

Input: P=(Xx,y),Q=(c,B)
X, y,a,p ek,
Output: C=7(P,Q), where CeF,,
C<«1,
a<—a’, B Bhve x2+1, 0« a-v

m-1
U X +y* +b+r—=

tive
on

for i=0 to m-1 do )
A +0+u+(a+V)s+t
C  C2 >Accqmula
CeC. A multiplicat
a<—a’, B« pB% u«u+yv,
Ve<V+1L 0« a-v )
end for Final
C  CcZ™1 ¥ powerir

J

Algorithm 2:

Input: P=(x,y),Q=(a,p)
X, y,a,p ek,
Output: C=7(P,Q), where CeF,,
Cela«—a’+18« B*+1,

U« VY+b+1, 090« ag-v

( for i=0 to (m-1)/2 do

C«C*’C«C-A

if i<(m-1)2 then
a<a', BBt u—u+v+],
Ve<V+l O« a-v

end if

\ end for

(A Ar(@?+v+D+s

C«C-A m+l m+l

C<CM, MT=(2*"-D(2"F2 2 +1)(2 2 +])

~
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Two Selected Algorithms (2)

Two main stages: accumulative multiplication and final powering

Only 7 underlying field multiplications are needed in each iteration
for both algorithms

All these multiplications can be completed simultaneously.

Half iterations can be saved when using Algorithm 2, however the
computation for final powering is much easier for Algorithm 1.

In our work, we use polynomial basis for both algorithms, and we
choose F,»and F . for our single FPGA implementations



Top Architecture of Pairing Processor
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Features:

e Hardwired logic instead
of stored-programmed
machine

. Iterative structure

* Register files for
intermediate results

. Main controller
designed as a finite
state machine

 The extension field
multiplier CA and
Multiplier 1 are working
for both stages




Two Possible Architectures for CA

w Co Ci z Co Ci1 C2 Cs
mul 1 mul 2 mul 3 l
in F,m in Fym n Fym -
’ : ’ sel sel — sel|= B
€ (® CO l l
(o (of} mul_1 mul_2 mul_3
P o) in Fym in Fym n Fymy
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‘ * (o)
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6 multipliers: 3 multipliers:
1. lower latency 1. higher latency
2. larger area 2. smaller area

3. lower product of latency by area 3. higher product of latency by area



Timing Diagram for Algorithm 1

Initialization of @

Storing results to Registers
MUL 1 I

MUL 1 i CA
:
: 1
5 a~v MULl MUL 1

H— mtimes ——————P»| MUL 2 o
LIJ

| “

A- B : Multiplication over F22m

Notations:

T1: Latency of CA and Multiplier 1
T2: Latency of Multiplier 2

T3: Latency of Inverter

MUL 1 : Multiplier 1

MUL 2 : Multiplier 2

C A: Special multiplier over F,4m
INV : Inverter

(st
C2+CyC, +CF

UL 2
Accumulative multiplications g \ MULl \

mv\ N

Co Cl

C2+CyC +C +cocl+cl

MUL 1 (D

éFinaI equnent|at|on§

o: T+2 (M+)(T +2) (M+Y(T,+2)+T,+2 (M+2)(T,+2)+2(T,+2)

see s

start (M+L(T, +2) +2(T, +2)

(m+2)(T,+2)+ 2T, +T,+6 done

|

(m+3)(T,+2)+31,+T,+8
Time

(clock cycles)

10




Timing Diagram for Algorithm 2
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Timing Diagrams
The large extension field multiplier CA works for both stages, and
two different sources of data

Multiplier 1 also works for both stages

Compared with CA and Multiplier 1, Multiplier 2 has smaller digit
size.

Only one subfield inversion is needed

Compared with Algorithm1, one half of iterations can be saved for
Algorithm 2, however more multiplications and squares are involved.

For Algorithm 2, CA has 4 different sources of data, i.e., more levels
of multiplexers are used.
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# CLB slices

Implementation Results for GF(2239)

4

Target device: Xilinx XC2CP100-6FF-1704
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# CLB slices

Implementation Results for GF(2283)

Target Device: Xilinx XC2VP100-6FF-1704
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Speed-up over Software

Software Platform: Intel Xeon 2.8 GHz; C++ library,
LIDIA, for subfield arithmetic

Hardware Platform: Xilinx XC2VP100-6FF-1704

Speed-up
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Comparison with Hardware Implementation
of Comparable Schemes (1)

Comparable Schemes

Binary elliptic Cubic Binary
(our scheme) elliptic hyper-elliptic
Field
X q=2" q=3m q=2m
Curve elliptic elliptic hyper-elliptic
Embedded
Degree, k 4 6 12
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Comparison with Hardware Implementation
of Comparable Schemes (2)

MOV Security
Elliptic Curve Discrete Discrete Logarithm
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Field F, MOV Security
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Binary hyper- 12 m
elliptic
Cubic elliptic g=3" k-(log,3)-m 9.5m
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# CLB slices

Comparison with Hardware Implementation
of Comparable Schemes (3)
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# CLB slices

Comparison with Hardware Implementation
of Comparable Schemes (4)
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Conclusions

First FPGA implementation of the Tate pairing schemes for
binary elliptic curves.

Two algorithms improved, implemented and compared
Algorithm 2 is faster, but its implementation takes more area

Speed-ups in the range 150-300 demonstrated for Xilinx
XC2VP100 vs. Xeon 2.8 GHz

Our designs outperform existing implementation of
comparable schemes in terms of the execution time by a
factor 10-20, the product of latency by area by a factor 12-46.
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