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Overview
• Introduction

– Identity based encryption (IBE) scheme
– Pairing based cryptography

• FPGA implementations
– Algorithms
– Architectures
– Timing diagram
– Results

• Comparison with software

• Comparison with previous work for comparable schemes

• Conclusions
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Identity Based Encryption Scheme

Cipher textC

EncryptionE

DecryptionD

MessageM

Bob’s private keyS
ID(Bob)

Bob’s identityID(Bob)

TA’s private keyS
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TA
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Notations
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Features of IBE:

1. Use the receiver’s ID as a public key for encryption
2. A third trust authority party is involved in generating the receiver’s private

key associated with one’s ID.

generated by
Trust Authority

during registration
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Pairing Based Cryptography (1)

• Pairing is a map between groups,
where , and

• The most important property of this map is
bilinearity

• In practice, Tate or Weil pairing are used.

a, b: integers P,Q: points on elliptic curves

e: G1 x G1  G2 G1 = E( Fq ) G2 = Fqk

e(aP, bQ) = e(P, Q)ab
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Pairing Based Cryptography (2)

Trusted Authority

Encryption Decryption

s: secret value

P: public value

PTA= s P
public key of TA

PID(Bob)= H1(ID(Bob))
Bob’s public key

SID(Bob)= s PID(Bob)

Bob’s private key

r: random number

Alice Bob

ID(Bob) SID(Bob)

ID(Bob)

H1

PID(Bob)

M

PTA

r P

C

C = (U, V) = (rP, M + H2(e(PID(Bob) , PTA )r)

M

M = (V + H2(e(SID(Bob), U ))

By bilinearity, e(SID(Bob, U) = e(sPID(Bob), rP) = e(PID(Bob), sP)r = e(PID(Bob) , PTA )r
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Two Selected Algorithms (1)
Algorithm 1:
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Two Selected Algorithms (2)

• Two main stages: accumulative multiplication and final powering

• Only 7 underlying field multiplications are needed in each iteration
for both algorithms

• All these multiplications can be completed simultaneously.

• Half iterations can be saved when using Algorithm 2, however the
computation for final powering is much easier for Algorithm 1.

• In our work, we use polynomial basis for both algorithms, and we
choose and for our single FPGA implementations2392

F 2832
F
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Top Architecture of Pairing Processor
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Features:

• Hardwired logic instead
of stored-programmed
machine

• Iterative structure

• Register files for
intermediate results

• Main controller
designed as a finite
state machine

• The extension field
multiplier CA and
Multiplier 1 are working
for both stages
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Two Possible Architectures for CA

6 multipliers:
1. lower latency
2. larger area
3. lower product of latency by area

3 multipliers:
1. higher latency
2. smaller area
3. higher product of latency by area
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Timing Diagram for Algorithm 1
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Timing Diagrams

• The large extension field multiplier CA works for both stages, and
two different sources of data

• Multiplier 1 also works for both stages

• Compared with CA and Multiplier 1, Multiplier 2 has smaller digit
size.

• Only one subfield inversion is needed

• Compared with Algorithm1, one half of iterations can be saved for
Algorithm 2, however more multiplications and squares are involved.

• For Algorithm 2, CA has 4 different sources of data, i.e., more levels
of multiplexers are used.
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Implementation Results for GF(2239)
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Implementation Results for GF(2283)
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Speed-up over Software
Software Platform: Intel Xeon 2.8 GHz; C++ library,

LiDIA, for subfield arithmetic

Hardware Platform: Xilinx XC2VP100-6FF-1704
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Comparison with Hardware Implementation
of Comparable Schemes (1)
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Comparison with Hardware Implementation
of Comparable Schemes (2)
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Comparison with Hardware Implementation
of Comparable Schemes (3)
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Comparison with Hardware Implementation
of Comparable Schemes (4)
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Conclusions

• First FPGA implementation of the Tate pairing schemes for
binary elliptic curves.

• Two algorithms improved, implemented and compared

• Algorithm 2 is faster, but its implementation takes more area

• Speed-ups in the range 150-300 demonstrated for Xilinx
XC2VP100 vs. Xeon 2.8 GHz

• Our designs outperform existing implementation of
comparable schemes in terms of the execution time by a
factor 10-20, the product of latency by area by a factor 12-46.


