
A Universal Hardware API for
Authenticated Ciphers

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri,
Farnoud Farahmand, Malik Umar Sharif, and Kris Gaj

Volgenau School of Engineering
George Mason University
Fairfax, Virginia 22030

Email: {ehomsiri, wdiehl, aferozpu, ffarahma, msharif2, kgaj}@gmu.edu

Abstract—In this paper, we propose a universal hardware Ap-
plication Programming Interface (API) for authenticated ciphers.
In particular, our API is intended to meet the requirements of all
algorithms submitted to the CAESAR competition. Two major
parts of the API, the interface and the communication protocol,
were developed with the goal of reducing any potential biases in
benchmarking of authenticated ciphers in hardware. Our high-
speed implementation of the proposed hardware API includes
universal, open-source pre-processing and post-processing units,
common for all CAESAR candidates and the current standards,
such as AES-GCM and AES-CCM. Apart from the full docu-
mentation, examples, and the source code of the pre-processing
and post-processing units, we have made available in public
domain a) a universal testbench to verify the functionality of
any CAESAR candidate implemented using our hardware API,
b) a Python script used to automatically generate test vectors
for this testbench, c) VHDL wrappers used to determine the
maximum clock frequency and the resource utilization of all
implementations, and d) RTL VHDL source codes of high-
speed implementations of AES and the Keccak Permutation F,
which may be used as building blocks in implementations of
related ciphers. We hope that the existence of these resources
will substantially reduce the time necessary to develop hardware
implementations of all CAESAR candidates for the purpose of
evaluation, comparison, and future deployment in real products.

I. MOTIVATION

The CAESAR competition [1], launched in 2014, aims at
identifying a portfolio of future authenticated ciphers with
security, performance, and flexibility exceeding that of the
current standards, such as AES-GCM [2] and AES-CCM [3].

Although security is commonly accepted to be the most
important criterion in all cryptographic contests, it is rarely by
itself sufficient to determine a winner. This is because multiple
candidates generally offer adequate security, and a trade-off
between security and performance must be investigated.

The focus of this paper is to facilitate the comparison
of modern authenticated ciphers in terms of their perfor-
mance and cost in hardware, and in particular in FPGAs, All
Programmable Systems on Chip, and ASICs. As a starting
point for such a comparison we propose defining hardware
API, composed of the specification of an interface of the
authenticated cipher core, and the communication protocol

This work is supported by NSF Grant #1314540

describing the exact format of all inputs and outputs, as well
as the timing dependencies among all data and control signals
passing through the specified interface.

Similarly to the case of previous contests, software imple-
mentations of the CAESAR candidates are being compared
using a uniform API, clearly defined in the call for submissions
[1]. So far, no similar hardware API has been proposed, not
to mention accepted by the cryptographic community.

As a result any attempt at the comparison of existing
hardware implementations is highly dependent on specific
assumptions about the hardware API, made independently
by various hardware designers. These assumptions can have
potentially a very high influence on all major performance
measures of the developed implementations.

Additionally, a hardware API is typically much more diffi-
cult to modify than a software API, making any last minute
standardization efforts and code adjustments highly inefficient
and questionable.

Therefore, there is a clear need for a proposal regarding a
uniform hardware API, which could be further modified and
improved using feedback from the cryptographic community,
and eventually endorsed by the CAESAR Committee, and
adopted by majority of future hardware developers. Our goal
is to address this issue by providing the exact specification
of the proposed interface, as well as multiple supporting
materials, such as open-source codes of pre-processing and
post-processing units, a universal testbench, and uniform ways
of generating optimized results.

II. PROPOSED FEATURES

The proposed features of our hardware API are as follows:

• inputs of arbitrary size in bytes (but a multiple of a byte
only)

• size of the entire message/ciphertext does not need to
be known before the encryption/decryption starts (unless
required by the algorithm itself)

• wide range of data port widths, 8 ≤ w ≤ 256
• independent data and key inputs
• simple high-level communication protocol
• support for the burst mode

• possible overlap among processing the current input
block, reading the next input block, and storing the
previous output block

• storing decrypted messages internally, until the result of
authentication is known

• support for encryption and decryption within the same
core

• ability to communicate with very simple, passive devices,
such as FIFOs

• ease of extension to support existing communication
interfaces and protocols, such as AMBA-AXI4 – a de-
facto standard for the System-on-Chip (SoC) buses [4],
and PCI Express – high-bandwidth serial communication
between PCs and hardware accelerator boards [5].

III. PREVIOUS WORK

Several general-purpose interfaces for SoCs have been re-
cently proposed, including but not limited to:

• AXI4, AXI4-Lite, AXI4-Stream (Advanced eXtensible
Interface) from ARM [4]

• PLB (Processor Local Bus) and OPB (On-chip Peripheral
Bus) from IBM [6]

• Avalon from Altera [7]
• FSL (Fast Simplex Link) from Xilinx Inc. [8], and
• Wishbone (used by opencores.org) from Silicore Corp.

[9]
These interfaces define the meaning and role of all data and

control signals of the communication buses, and the timing
dependencies among them, but do not describe the format of
either data inputs or data outputs passing the boundaries of
the cryptographic core.

During the SHA-3 contest [10], the first full hardware APIs,
dedicated to hash functions, were proposed by:

• GMU [11], [12]
• Virginia Tech [13], and
• University College Cork [14].

Our current proposal is partially based on these APIs.
The majority of interfaces used so far in the CAESAR com-

petition have been quite minimalistic and candidate specific
(e.g., [15]).

The only major exception was the adoption of the AXI4-
Stream interface by the ETH student, Cyril Arnould, in his
Master’s Thesis defended in March 2015 [16]. However,
the limitation of this solution was the use of non-uniform,
algorithm-specific control ports, which make the correspond-
ing cores mutually incompatible. Additionally, Arnaud’s pro-
posal does not contain any description of the exact formats of
inputs and outputs of the cipher.

IV. SPECIFICATION

A. Interface

The general idea of our proposed interface for an authenti-
cated cipher core (denoted by AEAD) is shown in Fig. 1. The
interface is composed of three major data buses for:

• Public Data Inputs (PDI)

• Secret Data Inputs (SDI), and
• Data Outputs (DO), respectively,

as well as the corresponding handshaking control signals,
named valid and ready. The valid signal indicates that the
data is ready at the source, and the ready signal indicates that
the destination is ready to receive them.

clk

sdi

sdi_valid

sdi_ready

sw

pdi

pdi_valid

pdi_ready

w

Public Data Input

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

Data Output

Ports

DO
w

do

do_ready

do_valid

AEAD

rst

Fig. 1: AEAD Interface

rst

w

sw

pdi

pdi_valid

pdi_ready

sdi

sdi_valid

sdi_ready

dout

empty

read

m_axis_tdata

m_axis_tvalid

m_axis_tready

Master

AXI4−Stream

clk rstclk rst

clk rst

clk rst

s_axis_tdata

s_axis_tvalid

s_axis_tready

AXI4−Stream

Slave
w

do

do_ready

do_valid

AEAD

clk

SDI

FIFO

Fig. 2: Typical external circuits: AXI4 IPs

full

pdi_valid

pdi_ready

clk rst

dout

empty

read

w
dout

empty

read

rst clkwr_clk
rd_clk =

sw

rstclk rd_clk
wr_clk =

din

write

pdi
w

AEAD

rstclk

SDI

FIFO

FIFO

PDI

rd_clk =rstwr_clk
clk

sdi

sdi_valid

sdi_ready

do

do_ready

do_valid
FIFO

DO

Fig. 3: Typical external circuits: FIFOs

The physical separation of Public Data Inputs (such as
the message, associated data, public message number, etc.)
from Secret Data Inputs (such as the key) is dictated by the
resistance against any potential attacks aimed at accepting
public data, manipulated by an adversary, as a new key.

The handshaking signals are a subset of major signals used
in the AXI4-Stream interface. As a result AEAD can com-
municate directly with the AXI4-Stream Master through the
Public Data Input, and with the AXI4-Stream Slave through
the Data Output, as shown in Fig. 2. At the same time, AEAD

is also capable of communicating with much simpler external
circuits, such as FIFOs, as shown in Fig. 3.

In both cases, the Secret Data Input is connected to a FIFO,
as the amount of data loaded to the core using this input port
does not justify the use of a separate AXI4-Stream Master,
such as DMA.

An additional advantage of using FIFOs at all data ports is
their potential role as suitable boundaries between the two
clock domains, used for communication and computations,
accordingly. This role is facilitated by the use of separate
read and write clocks, shown in Fig. 3 as rd_clk and
wr_clk, accordingly. All FIFOs mentioned in our description
are assumed to operate in the standard mode (as opposed to
the First-Word Fall-Through mode).

B. Communication Protocol

All typical inputs and outputs of an authenticated cipher are
shown in Fig. 4. Npub denotes Public Message Number, such
as Nonce or Initialization Vector. Nsec denotes Secret Message
Number, which was recently introduced in some authenticated
ciphers. Both Npub and Nsec are typically assumed to be
unique for each message encrypted using a given key.

All inputs to encryption, other than a key, are optional, and
can be omitted. If a given input is omitted, it is assumed to
be an empty string.

The proposed format of the Secret Data Input is shown in
Fig. 5. The entire input starts with an instruction, which in case
of SDI is limited to Load Key (LDKEY) and Load Round Key
(LDRKEY). The instruction is followed by a single segment.
A segment starts with a separate header, describing its type
and size. In case of SDI, the only allowed segment types are:
Key and Round Key. Note that instruction Load Key and its
accompanying data segment (Round Key) should only be used
when key scheduling is done in software.

or

Key

TagNpub AD CiphertextNsec
Enc

Key

Encryption

Npub Nsec AD Message

Npub AD CiphertextNsec
Enc Tag Nsec AD MessageInvalid

Decryption

Fig. 4: Input and Output of an Authenticated Cipher. Notation:
Npub - Public Message Number, Nsec - Secret Message
Number, AD - Associated Data

instruction = LDKEY

seg_0_header

w−bit

seg_0 = Key

(a) Key loading

seg_0 = Round Key

seg_0_header

w−bit

instruction = LDRKEY

(b) Round key loading

Fig. 5: Format of Secret Data Input for a) Loading main key,
b) Loading a sequence of round keys

(b)

seg_4_header

seg_4 = Msg_1

seg_3_header

seg_3 = Msg_0

w−bit

w−bit

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

seg_2 = Message

(a)

instruction = ENC

instruction = ACTKEY

seg_1_header

seg_1 = AD_0

seg_0 = Npub

seg_2_header

seg_2 = AD_1

seg_0_header

instruction = ACTKEY

instruction = ENC

Fig. 6: Format of Public Data Input in case of a) one segment
for each data type, b) multiple segments for AD and Message

The proposed format of the Public Data Input is shown
in Fig. 6. The allowed instruction types are: Activate Key,
Authenticated Encryption, and Authenticated Decryption. The
Activate Key instruction, typically directly precedes the Au-
thenticated Encryption or Authenticated Decryption instruc-
tion. PDI is divided into segments. Segment types allowed dur-
ing authenticated encryption include: Public Message Number
(Npub), Secret Message Number (Npub), Associated Data
(AD), and Message. Segment types allowed during authen-
ticated decryption include: Public Message Number (Npub),
Encrypted Secret Message Number (EncNpub), Associated
Data (AD), Ciphertext, and Tag. Any segment type can be
omitted, if it is not required by a given cipher. Public, Secret
and Encrypted Secret Message Number can only use one
segment, as their size are typically quite small (in the range
of 16 bytes). The Associated Data and Message can be (but
do not have to be) divided into multiple segments (as shown
in Fig. 6b).

The primary reasons for dividing AD and Message into mul-
tiple segments is that the full message size may be unknown
when authenticated encryption starts, and/or the maximum
single segment size (determined by the parameters of the
implementation) is smaller than the message size (e.g., 216

bytes in case of our supporting codes).
The instruction format is shown in Fig. 7. The Opcode

field determines which operation should be executed next. The
same field also serves as a Status field to indicate whether the
decryption operation is successful or not. The Msg ID field
should be set to a unique message identifier, between 0 and
255. Similarly, the Key ID field should be set to a unique key
identifier, between 0 and 255.

The segment header format is shown in Fig. 8. Seg Len is
a size of a segment expressed in bytes. The field Info contains
information about the Segment Type, as well as single-bit flags
denoting the last segment of a particular type (EOT), and the
last segment of the entire input (EOI), accordingly. In case of
decryption, both the tag segment and the last segment before
the tag must be marked as the last segment of the entire input

(EOT=1 and EOI=1).

0101 − Load Round Key (LDRKEY)

48 8

Divided into 24/w words, starting from MSB

0000Msg ID Key ID

MSB LSB

0011 − Authenticated Decryption (DEC)

0010 − Authenticated Encryption (ENC)

Opcode:

Status

Opcode
or

0100 − Load Key (LDKEY)

Status:

1110 − Pass

1111 − Fail

Others − Reserved0111 − Activate Key (ACTKEY)

4

Fig. 7: Instruction Format

Fig. 8: Segment Header Format

V. SUPPORTING CODES FOR HIGH-SPEED
IMPLEMENTATIONS

A. High-Level Block Diagram

The high-level block diagram of our proposed high-speed
implementation of an authenticated cipher is shown in Fig. 9.
AEAD consists of AEAD Core and the memory region. The
memory region is separated from the AEAD Core for the ease
of benchmarking.

The AEAD Core consists of the following three primary
units: PreProcessor, PostProcessor, and CipherCore. Support-
ing codes for PreProcessor, PostProcessor, and the memory
region are provided as a part of our HW API distribution [17].

Bypass FIFO is a standard FIFO used for holding public
input data that should be transferred to the output module
unchanged, e.g., segment headers and associated data. This
data is held in the Bypass FIFO for a short period of time
until the PostProcessor is ready to receive it. AUX FIFO is
an auxiliary FIFO, operating in the standard mode, used to
store a decrypted message until this message is either fully
authenticated or found invalid.

B. PreProcessor and PostProcessor

The PreProcessor is responsible for the execution of the
following tasks common for majority of CAESAR candidates:

• parsing segment headers

• loading and activating keys
• Serial-In-Parallel-Out loading of input blocks
• padding input blocks, and
• keeping track of the number of data bytes left to process.

The PostProcessor is responsible for the following tasks:
• clearing any portions of output blocks not belonging to

ciphertext or plaintext
• Parallel-In-Serial-Out conversion of output blocks into

words
• formatting output words into segments
• storing decrypted messages in AUX FIFO, until the result

of authentication is known, and
• generating an error word if authentication fails.

Our goal is to assure the following features of the supporting
codes:

• Ease of use
• No influence on the maximum clock frequency of AEAD

(up to 300 MHz in Virtex 7)
• Limited area overhead
• Clear separation between the core unit and internal FI-

FOs.
The PreProcessor and PostProcessor cores are highly config-
urable using generics. These generics can be used for example
to determine:

• the widths of the PDI, SDI, and DO ports,
• the size of the message/ciphertext block, key, nonce, and

tag,
• padding for the associated data and the message, and
• types and order of segments expected by a particular

cipher.
The way of loading and activating a new key by the

PreProcessor is described below:
For the first message and the subsequent key change, a new

key must be loaded into the PreProcessor via the SDI port
first. This can be done by providing the Load Key instruction.
A typical key loading sequence of words is shown below:

1 # 001 : Instruction(Opcode=Load key)
2 INS = 0104010000000000
3 # 001 : SgtHdr (Size= 16) (EOI=1)(EOT=1)(SgtType=Key)
4 HDR = 0163000000000010
5 DAT = D7B1CB5221D16D92
6 DAT = BB910D157C6F1C04

In this example, the first word specifies the Load Key
instruction. The second word specifies that the subsequent
data segment is of the key type, with the size of 16 bytes
(128 bits). This segment is also the end-of-type and the
end-of-input segment. The next two words consist of the data
representing the key.

Before the new key becomes active, it must be activated
via the PDI port first. This mechanism facilitates the
synchronization between the two input ports. It also allows
loading a new key without interfering with the key that is
being used. A typical key activation process is shown below:

npubnpub

TAG_SIZE

sdi_ready

sdi

sdi_valid

b
y
p

a
s
s
_

fu
ll

b
y
p

a
s
s
_

w
r

KEY_SIZE

W

sdi

sdi_ready

pdi_ready

pdi

pdi_valid

sdi_valid

write

din

full empty

dout

read

FIFO

Bypass

DBLK_SIZE/8

DBLK_SIZE/8

bdi_decryptbdi_decrypt

nsec_readynsec_ready

bdi_pad_loc

bdi_valid_bytesbdi_valid_bytes

bdi_pad_loc

bdi_sizebdi_size

bdi_read bdi_read

exp_tag_ready exp_tag_ready

bdi_eot

bdi_eoi

bdi_eot

bdi_eoi

bdi_nodatabdi_nodata

BS_BYTES

bdi_proc

bdi_readybdi_ready

bdi_proc

bdi_adbdi_ad

nsec_readnsec_read

npub_readnpub_read

key_updated

key_needs_update

key_ready

key_needs_update

key_ready

key_updated

rdkey_ready

rdkey_read

rdkey_ready

rdkey_read

npub_ready npub_ready

W

W 4 W 3

do

do_ready

do_valid

do_ready

do

tag_ready

tag_write

msg_auth_valid

msg_auth_done

b
y
p

a
s
s
_

e
m

p
ty

b
y
p

a
s
s
_

rd

statusdoutctrldin

a
u

x
_

fifo
_

s
ta

tu
s

a
u

x
_

fifo
_

d
o

u
t

a
u

x
_

fifo
_

d
in

a
u

x
_

fifo
_

c
trl

b
y
p

a
s
s
_

d
a

ta

do_validProcessor

Post

AUX FIFO

bdo_nsec

bdo_size

bdo_ready

bdo_write

bdo_data tag_dataProcessor

Pre

Controller

CipherCore

Datapath

CipherCore

W

TAG_SIZE

len_a

len_d

len_a

len_d

exp_tag exp_tag

CTR_AD_SIZE

tag

bdo

bdibdi

keykey

rdkeyrdkey

nsecnsec
NSEC_SIZE

AEAD Core

CipherCore

pdi

pdi_valid

pdi_ready

DBLK_SIZE

RDKEY_SIZE

AEAD

SW

msg_auth_done

tag_ready

tag_write

msg_auth_valid

msg_auth_done

bdo_nsec

bdo_ready

bdo_write

bdo_size

DBLK_SIZE

BS_BYTES+1

CTR_D_SIZE

NPUB_SIZE

Fig. 9: High-level block diagram of a high-speed implementation

1 # 001 : Instruction (Opcode=Activate key)
2 INS = 0105010000000000

This word must be applied before any other instruction
word.

C. AES and Keccak Permutation F

Additional support is provided for designers of cipher cores
of CAESAR candidates based on AES and Keccak. Fully
verified VHDL codes, block diagrams, and ASM charts of
AES and Keccak Permutation F have been developed and
made available at [17]. Our AES core implements a basic
iterative architecture of a block cipher, with the SubBytes
operation realized using memory. Either distributed memory
(implemented using multipurpose LUTs) or block memory is
inferred depending on the specific options of FPGA tools.

D. Using Supporting Codes

A typical hardware development process based on the use of
our supporting codes requires a designer to modify the default
values of generics in the AEAD_Core to match the needs of
a targeted algorithm, and then develop the CipherCore based
on user preferences (see Section VI).

The primary benefit of using our supporting codes is that
the designers can focus on developing the CipherCore specific

to a given algorithm, without worrying about the functionality
common for multiple authenticated ciphers. Additionally, the
interface of the CipherCore has full-block widths for all
major data buses, which should substantially simplify the
development effort.

VI. THE DEVELOPMENT OF CIPHERCORE

It is recommended to start the development of the Cipher-
Core, specific to a given authenticated cipher, by using the
provided AEAD_Core and CipherCore template files as a
starting point [17]. This is because the appropriate connections
among the CipherCore, the PreProcessor and the PostProcessor
modules are already specified in these files. A designer needs
first to modify the generics at the top of the AEAD_Core
module, and then develop the CipherCore Datapath and the
CipherCore Controller.

The development of the CipherCore is left to individual
designers and can be performed using their own preferred
design methodology. Typically, when using a traditional RTL
(Register Transfer Level) methodology, the CipherCore Datap-
ath is first modeled using a block diagram, and then translated
to a hardware description language (VHDL or Verilog HDL).
The CipherCore Controller is then described using an algo-

rithmic state machine (ASM) chart or a state diagram, further
translated to HDL.

The algorithmic state machine (ASM) of the CipherCore
Controller is typically characterized by the following groups
of states:

1) Load and/or activate the key
2) Process associated data
3) Process message/ciphertext
4) Generate/verify an authentication tag

In the first group of states, Load and activate the key,
the CipherCore should monitor the key_needs_update and
key_ready inputs, and provide key_updated output at the
appropriate time. The circuit should operate as follows:

After reset, key_needs_update and key_ready are low
and a new key can be loaded into the PreProcessor at any time.
After the new key is loaded using the SDI port, key_ready
goes high. After the instruction ACTIVATE_KEY is received
at the PDI port, the key_needs_update goes high. Please
note that the above two events can occur in an arbitrary order.

After key_ready and key_needs_update are both high,
and the CipherCore is either in the period between reset
and the first input, or in the period between two consecutive
inputs, the CipherCore should read the new key. After the
key is read, key_updated signal should be set to high. The
key_updated signal should be deactivated at the end of
processing of the current input. If a user wants to use the
same key for the subsequent input data, ACTIVATE_KEY
instruction can be omitted from the PDI input port. In this
case, the processing of new data will start as soon as an
instruction describing the way of processing a new input is
decoded (which is indicated by bdi_proc set to high).

In summary, the CipherCore should monitor the
key_needs_update port prior to processing any new
input. If key_needs_update is high, the CipherCore should
wait for key_ready=1, and then read the new key, and
acknowledge its receipt using the key_updated output.
If key_needs_update is low and the first instruction
describing the way of processing a new input is decoded
(bdi_proc=1), then the CipherCore should move directly to
processing a new input using a previous key. If none of these
two events is detected, the CipherCore should remain in the
same state. The described behavior is shown in Fig. 10. The
key initialization and process data are two separate states that
operate depending on the requirements of a specific cipher.

In the second group of states, Process associated data,
the core continuously waits for the next AD block until the
bdi_eot signal becomes active. This signal indicates that the
current block is the last block of associated data. The state ma-
chine needs then to process this last block, and proceed to the
next group of states, responsible for encryption and decryption
of data. If the first block read by the CipherCore is not of type
AD (bdi_ad=0), then associated data is assumed to be empty.
If the last block of AD (bdi_ad=1 and bdi_eot=1) is also the
last block of input (bdi_eoi=1), then the message/ciphertext
is assumed to be empty.

process data

key_ready?key_needs
update?

key_updated key initialization

1

0 0

1

10
bdi_proc?

key_check

Fig. 10: A part of the Algorithmic State Machine (ASM) chart
describing a way in which the CipherCore Controller may
handle key loading and key activation

The third group of states, Process message/ciphertext,
should operate in the similar way as the second group, and
should similarly progress to the next group of states when the
last block of ciphertext or message is processed. In this group
of states, bdi_ad should remain inactive for each input block
to indicate that the current block is not an associated data
block. A corresponding output data block should be passed
to the PostProcessor using the bdo port with an accompanied
active bdo_write control signal.

After each block of associated data, message, or ciphertext
is read by CipherCore , the bdi_read output must be activated
for one full clock cycle. This action clears control inputs, such
as bdi_eot and bdi_eoi that may need to be checked at a
later time. At the same time, this action cannot be delayed
because doing so would stall the PreProcessor and prevent it
from loading any subsequent data block using the PDI input.
As a result, bdi_eot and bdi_eoi must be registered at
the latest in the clock cycle when the acknowledgment signal
bdi_read is generated. Only registered values of these inputs
should be checked at a later time.

In the last group of states, Generate/verify an authen-
tication tag, during the authenticated encryption, the core
should generate a new tag and pass it to the PostProcessor,
using ports tag and tag_write. During the authenticated
decryption, msg_auth_done should be activated, and the
msg_auth_valid port should be used to output the result
of authentication.

It should be noted that not all signals at the interfaces
PreProcessor-CipherCore and PostProcessor-CipherCore need
to be used for each particular cipher. If any port is left
unconnected, the corresponding port and the associated logic
are automatically trimmed off (removed) by the synthesis tool.
Thus, the full set of internal signals shown in Fig. 9 and
included in the template files available at [17] should be treated
as a superset of signals required by all authenticated ciphers,
supported by our hardware API and the associated high-speed
PreProcessor and PostProcessor modules.

The full description of all generics and ports used by our
supporting VHDL codes can be found in the full documenta-
tion available at [17].

VII. UNIVERSAL TESTBENCH AND TEST VECTOR
GENERATION

Our supporting codes include:
• universal testbench for any authenticated cipher core that

follows our Hardware API
• AETVgen: Authenticated Encryption Test Vector

generation script
• Modified C codes of the CAESAR candidates from the

SUPERCOP distribution.
AETVgen generates a comprehensive set of test vectors for

a specific CAESAR candidate, based on the reference C code
of that candidate, and additional parameters, provided by the
user [17].

VIII. GENERATION AND PUBLICATION OF RESULTS

Generation of results is possible for AEAD, AEAD Core,
and CipherCore (see Fig. 9). We strongly recommend gener-
ating results primarily for AEAD Core. This recommendation
is based on the fact that

1) CipherCore has an incomplete functionality and a full-
block-width interface, which is not realistic in a typical
application where FIFOs are located on the boundary
between two subsystems,

2) Using AEAD may cause difficulty with setting BRAM
usage to 0 (as often desired in order to easily calculate
throughput to area ratio),

In case of AEAD Core, for Virtex 7 and Zynq, we recom-
mend generating results using Xilinx Vivado [18], operating
in the Out-of-Context (OOC) mode [19]. In this mode, no pin
limit applies. For Virtex 6 and below, since Xilinx ISE must
be used, and the OOC mode is not supported by this tool, we
recommend using a simple wrapper, with five ports: clk, rst,
sin, sout, piso_mux_sel, provided as a part of supporting files
[17].

In case of CipherCore, because of a large number of
required ports and limited effectiveness of the OOC mode, we
recommend using the aforementioned five-port wrapper for all
FPGA families.

In terms of optimization of tool options, for Virtex 7 and
Zynq, we recommend the use of 25 default optimization
strategies available in Xilinx Vivado. For Virtex 6 and below,
we recommend using Xilinx ISE and ATHENa [20]. For Altera
FPGAs, we suggest using Altera Quartus II and ATHENa.

Our database of results for authenticated ciphers is avail-
able at [21]. After receiving an account in the database, the
designers can enter results by themselves.

A. Overheads

So far, eight CAESAR Round 1 candidates (all qualified
to Round 2) and the current standard AES-GCM have been
implemented using our hardware API. The detailed results,
for Xilinx Virtex 6, Virtex 7, and Zynq 7000 families, are
available in [21].

The first preliminary results regarding an overhead intro-
duced by extending CipherCore to AEAD Core are summa-
rized in Figs. 11, 12, 13, and 14.

Fig. 11: AEAD Core vs. CipherCore Area Overhead for Virtex
6 FPGA family

Fig. 12: AEAD Core vs. CipherCore Throughput/Area Over-
head for Virtex 6 FPGA family

For Virtex 6, the highest area overheads are incurred for
ICEPOLE and Keyak (both in the range of 25%). These large
overheads are caused primarily by large cipher block sizes
(1024 bits for ICEPOLE and 1344 bits for Keyak), as well
as large input word sizes (w=256 and w=128, respectively).
For all remaining algorithms, the overhead does not exceed
18%, even for the smallest investigated cipher cores, and
reaches values in the range of 2-3% for the biggest cores.
For one algorithm, POET, the area overhead becomes even
negative, which can be explained only by the boundary
optimizations performed by Xilinx FPGA tools. In terms
of the Throughput/Area ratio, the overheads are the highest
for ICEPOLE, PRIMATES-HANUMAN, Keyak, AES-GCM,
and PRIMATES-GIBBON, all in the range 15-19%. For the
remaining algorithms, the overhead does not exceed 6%.

For Virtex 7, the area overheads are the highest for Keyak
(due to the large block and word sizes), as well as PRIMATES-
GIBBON and PRIMATES-HANUMAN (due to low overall
area of these cores), all between 18% and 27%. For all
remaining algorithms, the area overhead does not exceed 15%,
and becomes even negative for AES-COPA. In terms of the
Throughput/Area ratio, the overhead is exceptionally high for
Keyak (35.3%). For all remaining algorithms, it does not
exceed 30%.

Fig. 13: AEAD Core vs. CipherCore Area Overhead for Virtex
7 FPGA family

Fig. 14: AEAD Core vs. CipherCore Throughput/Area Over-
head for Virtex 7 FPGA family

IX. UNSUPPORTED FEATURES AND FUTURE WORK

The features of our Hardware API that are not yet fully
supported by our codes available at [17] include:

• use of Message ID
• use of Key ID.
The possible future extensions of the API and supporting

codes include:
• detection and reporting of input formatting errors
• support for two-pass algorithms
• accepting inputs with padding done in software
• support for multiple streams of data.

X. CONCLUSIONS

In this paper, we have described our proposal for a com-
plete Hardware API for authenticated ciphers, including the
interface and communication protocol. The design with our
Hardware API is facilitated by:

• Detailed specification
• Universal testbench and Automated Test Vector Genera-

tion
• PreProcessor and PostProcessor Units for high-speed

implementations
• Universal wrappers for generating results
• Source codes of AES and Keccak Permutation F
• Ease of recording and comparing results using our

database of results.

Our proposal is open for discussion and possible improvements
through better specification as well as better implementation
of supporting codes.

REFERENCES

[1] CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness. (2014, Mar.) Cryptographic competitions.
[Online]. Available: http://competitions.cr.yp.to/index.html

[2] J. Salowey, A. Choudhury, and D. McGrew, “AES Galois Counter
Mode (GCM) cipher suites for TLS,” RFC 5288 (Proposed Standard),
Aug 2008. [Online]. Available: https://tools.ietf.org/html/rfc5288

[3] D. McGrew and D. Bailey, “AES-CCM cipher suites for TLS,”
RFC 6655 (Proposed Standard), July 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6655

[4] ARM. AMBA Specifications. [Online]. Available: http://www.arm.com/
products/system-ip/amba-specifications.php

[5] PCI-SIG. Specifications. [Online]. Available: https://pcisig.com/
specifications

[6] IBM. 32-bit Processor Local Bus: Architecture specifications.
[Online]. Available: http://embedded.eecs.berkeley.edu/mescal/forum/
7/coreconnect_32bit.pdf

[7] Altera. (2015, March) Avalon Interface Specifications. [Online].
Available: https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/manual/mnl_avalon_spec.pdf

[8] Xilinx. (2012, December) Logicore IP Fast Simplex Link (FSL)
V20 Bus (v2.11f). [Online]. Available: http://www.xilinx.com/support/
documentation/ip_documentation/fsl_v20.pdf

[9] OpenCores. (2010) Wishbone B4: WISHBONE System-on-Chip
(SoC)Interconnection Architecture for Portable IP Cores. [Online].
Available: http://cdn.opencores.org/downloads/wbspec_b4.pdf

[10] National Institute of Standards and Technology. (2014, Mar.) Third
(Final) Round Candidates. [Online]. Available: http://csrc.nist.gov/
groups/ST/hash/sha-3/

[11] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive
Methodology for Comparing Hardware Performance of Fourteen Round
Two SHA-3 Candidates Using FPGAs,” in Cryptographic Hardware
and Embedded Systems, CHES 2010, ser. Lecture Notes in Computer
Science, S. Mangard and F.-X. Standaert, Eds., vol. 6225. Springer
Berlin Heidelberg, 2010, pp. 264–278.

[12] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing hardware
performance of fourteen round two SHA-3 candidates using FPGAs,”
Cryptology ePrint Archive, Report 2010/445, 2010.

[13] Z. Chen, S. Morozov, and P. Schaumont, “A hardware interface for
hashing algorithms,” Cryptology ePrint Archive, Report 2008/529, 2008.

[14] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. P. Marnane, “A hardware wrapper for the SHA-3 hash algorithms,”
Cryptology ePrint Archive, Report 2010/124, 2010.

[15] A. Moradi, “A Hardware Implementation of POET,” Germany,
Jan 2015. [Online]. Available: https://groups.google.com/forum/#!msg/
crypto-competitions/j0goqKCqFMI/SYG5-61mEcwJ

[16] C. Arnould, “Towards Developing ASIC and FPGA Architectures of
High-Throughput CAESAR Candidates,” Master’s thesis, ETH Zurich,
March 2015.

[17] Cryptographic Engineering Research Group (CERG) at GMU. (2015,
Jul.) GMU Hardware API. [Online]. Available: https://cryptography.
gmu.edu/athena/index.php?id=download

[18] Xilinx. Vivado Design Suite. [Online]. Available: http://www.xilinx.
com/products/design-tools/vivado.html

[19] ——, Vivado Design Suite User Guide: Hierarchical Design, April 2015.
[Online]. Available: http://www.xilinx.com/support/documentation/sw_
manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf

[20] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and
B. Y. Brewster, “ATHENa – automated tool for hardware evaluation: To-
ward fair and comprehensive benchmarking of cryptographic hardware
using FPGAs,” in 20th International Conference on Field Programmable
Logic and Applications - FPL 2010. IEEE, 2010, pp. 414–421.

[21] Cryptographic Engineering Research Group (CERG) at GMU. (2015,
Jul.) GMU ATHENa Database of Results. [Online]. Available:
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

http://competitions.cr.yp.to/index.html
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc6655
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
https://pcisig.com/specifications
https://pcisig.com/specifications
http://embedded.eecs.berkeley.edu/mescal/forum/7/coreconnect_32bit.pdf
http://embedded.eecs.berkeley.edu/mescal/forum/7/coreconnect_32bit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/
https://groups.google.com/forum/#!msg/crypto-competitions/j0goqKCqFMI/SYG5-61mEcwJ
https://groups.google.com/forum/#!msg/crypto-competitions/j0goqKCqFMI/SYG5-61mEcwJ
https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

	Motivation
	Proposed Features
	Previous Work
	Specification
	Interface
	Communication Protocol

	Supporting Codes for High-Speed Implementations
	High-Level Block Diagram
	PreProcessor and PostProcessor
	AES and Keccak Permutation F
	Using Supporting Codes

	The Development of CipherCore
	Universal Testbench and Test Vector Generation
	Generation and Publication of Results
	Overheads

	Unsupported Features and Future Work
	Conclusions
	References

