WARM-UP QUESTIONS

1. Compute and sketch the linear convolution of $x[n] * h[n]$

 $x[n]$: 1 1 1 1 1 1 1 1 1 1
 $h[n]$: 1 2 3 4 5

2. Compute the 8-IT circular convolution of $x_0[n] + h[n]$: $x_0[n]$: 1 1 1 1 1 1 1 1 $h[n]$: 1 2 3 4 5

 (You may want to interpret $x_0[n]$ and $h[n]$ as linear convolution plus aliasing.)
OVERLAP-ADD METHOD

INPUT DATA
\[x[n] \]

\[\tilde{x}[n] \]

\[x[n] \]

\[\tilde{y}[n] \]

\[y[n] \]

OUTPUT DATA

\[y_0[n] \]

\[y_1[n] \]

\[y_2[n] \]

\[y_p[n] \]

DEFT SIZE = \(N = L + P - 1 \)

DATA BLOCK SIZE = \(L \)

FILTER LENGTH = \(P \)

NOTE: MATLAB's FFT/IFFT USES THE OVERLAP-ADD SOLUTION.

OVERLAP-SAVE METHOD

INPUT DATA
\[x[n] \]

\[\tilde{x}[n] \]

\[x[n] \]

\[\tilde{x}[n] \]

\[x[n] \]

\[\tilde{x}[n] \]

OUTPUT DATA

\[y_0[n] \]

\[y_1[n] \]

\[y_2[n] \]

\[y_p[n] \]

DEFT SIZE = \(N \)

DATA BLOCK SIZE = \(L \)

FILTER LENGTH = \(P \)

\((\text{window} \ P-1 \text{ Pts from Prev. Block} \)

\(\text{Plus} \ L-P+1 \text{ New Pows} \)
2) Assuming you can use 8-pt DFT's, show how to implement OL-ADD for $x[n] + h[n]$ defined in (1).
 a) How many input blocks are there? Sketch them.

 b) Show result of convolving $x_p[n]$ @ $h[n]$ for each block.

 c) Add up to obtain result ($y[n]$)

4) Assuming 8-pt DFT's, show how to implement OL-SAVE for $x[n] + h[n]$ defined in (1).
 a) How many input blocks are there? Sketch them.

 b) Show result of convolving $x_p[n]$ @ $h[n]$

 c) Patch together to obtain result ($y[n]$)

Question: How many DFT's required for OL-ADD? OL-SAVE?
How many IFT's required for OL-ADD? OL-SAVE?