Problem 7.1
Figure 1 shows the DFS, \(\tilde{X}_1[k] \), of a periodic sequence \(\tilde{x}_1[n] \) that has period \(N = 4 \). Figure 2 shows the periodic sequence \(\tilde{x}_2[n] \) (period \(N = 4 \)).

(a) Determine the periodic sequence \(\tilde{x}_1[n] \).

(b) Find the sequence \(\tilde{y}_1[n] \) whose DFS is equal to the product of the DFS of \(\tilde{x}_1[n] \) and the DFS of \(\tilde{x}_2[n] \), i.e., \(\tilde{Y}_1[k] = \tilde{X}_1[k] \tilde{X}_2[k] \).

(c) Suppose that \(\tilde{x}_1[n] \) is the input to a filter with frequency response \(h[n] = \left(\frac{1}{2} \right)^n u[n] \). What is the output of the filter? (An analytical expression should be fairly easy to obtain.)
Problem 7.2
Oppenheim and Schaefer, problem 8.28

Problem 7.3
Oppenheim and Schaefer, problem 8.29

Problem 7.4
Compute the DFT of each of the following finite-length sequences considered to be of length N (where N is even):

(a) $x[n] = \delta[n]$

(b) $x[n] = \delta[n - n_0]$ \hspace{1cm} $0 \leq n_0 \leq N - 1$

(c) $x[n] = \begin{cases}
1, & n \text{ even}, \hspace{0.5cm} 0 \leq n \leq N - 1 \\
0, & n \text{ odd}, \hspace{0.5cm} 0 \leq n \leq N - 1
\end{cases}$

(d) $x[n] = \begin{cases}
1, & 0 \leq n \leq N/2 - 1 \\
0, & N/2 \leq n \leq N - 1
\end{cases}$

(e) $x[n] = \begin{cases}
\alpha^n, & 0 \leq n \leq N - 1 \\
0, & \text{otherwise}
\end{cases}$