A real continuous-time signal \(x_c(t) \) is bandlimited to frequencies below 10 kHz, i.e., \(X_c(j\Omega) = 0 \) for \(|\Omega| \geq 2\pi(10000) \). The signal \(x_c(t) \) is sampled with a sampling rate of 20 kHz to produce a sequence \(x[n] = x_c(nT) \) with \(T = 0.5 \times 10^{-4} \) seconds. The \(N \)-point DFT \(X[k] \) of \(N = 1000 \) samples of \(x[n] \) is computed.

(a) What continuous-time frequency does \(X[k = 150] \) correspond to?

(b) What continuous-time frequency does \(X[k = 800] \) correspond to?

Problem ECE535-6 (Old exam question worth 25 points)

(a) For part (a) of this problem \(x_1[n] \) refers to a 6-point sequence which has a real 6-point DFT \(X_1[k] \) as shown in Figure 1.

(i) Determine \(x_1[0] \).
(ii) Sketch and clearly label a plot of \(X_2[k] \), the 6-point DFT of \(x_2[n] \) where
\[
x_2[n] = (-1)^n x_1[n] \quad 0 \leq n \leq 5.
\]

(b) The 6-point sequence \(Y[k] \) is defined as
\[
Y[k] = X_4[k] X_5[k]
\]
where \(X_4[k] \) and \(X_5[k] \) are the 6-point DFT’s of the 6-point sequences \(x_4[n] \) and \(x_5[n] \), respectively. All that is known about these two sequences is that \(x_4[0] = 0 \). The sequence \(y[n] \) is the 6-point inverse DFT of \(Y[k] \). Let \(y_{\text{lin}}[n] \) be the result of the linear convolution of \(x_4[n] \) and \(x_5[n] \). Specify the set of values of \(y_{\text{lin}}[n] \) that can be obtained from \(y[n] \) and how you would extract them from \(y[n] \). Note that your method of extraction only has to work for the \(x_4 \) and \(x_5 \) sequences described above – not for general 6-point sequences.