ECE-738 Problem 10

Consider the complex Gaussian random variable \(\tilde{a} \):

\[
\tilde{a} = a_R + j a_I
\]

where \(a_R \) and \(a_I \) are real independent Gaussian random variables with zero mean and variance equal to 1.

(a) Determine the mean and variance of the complex variable \(\tilde{a} \).

(b) Suppose you want to generate random realizations of a zero-mean complex Gaussian variable \(\tilde{b} \) with variance equal to \(\sigma_b^2 \). 1000 random realizations of this variable can be generated with the following Matlab commands:

\[
\begin{align*}
N &= 1000; \\
\text{btilde} &= C \cdot \text{randn}(1,N) + j \cdot D \cdot \text{randn}(1,N) + E;
\end{align*}
\]

where \(C, D, \) and \(E \) are constants. Determine the values of \(C, D, \) and \(E \) which will ensure that the samples of \(\tilde{b} \) have zero mean and variance \(\sigma_b^2 \).

Note: We often model a planewave signal incident on an array as follows:

\[
x = \tilde{b} \sqrt{M} v(\phi) + w,
\]

where \(v(\phi) \) is the array response vector and \(\tilde{b} \) is a zero-mean complex Gaussian scalar random variable with variance \(\sigma_b^2 \). The \(w \) is a vector containing zero-mean complex Gaussian noise. In the examples we considered in class last Monday night, the noise vector was spatially white, hence \(R_w = \sigma_w^2 \text{I} \). To generate multiple realizations of \(x \), we assume that the \(\tilde{b} \) for each realization is uncorrelated from one realization to the next and that the noise is also uncorrelated from one realization to the next. Thus, we would generate \(N \) independent samples of \(\tilde{b} \) and multiply them by the scaled array response vector and then add noise. For example, following the Matlab commands will generate snapshots of a planewave signal incident on a uniform line array with angle \(\phi \). The array is assumed to have spacing \(d \) and the signal has wavelength \(\lambda \).

\[
\begin{align*}
u0 &= d \cdot \text{sin}(\phi) / \text{lambda}; \\
v &= 1 / \sqrt{M} \cdot \text{exp}(-j \cdot 2 \cdot \pi \cdot (0:M-1) \cdot v0); \\
x &= \sqrt{M} \cdot v \cdot \text{btilde};
\end{align*}
\]

Note that the \(\text{btilde} \) vector is defined as it was in Problem 10 above. Also, note that for Matlab, \(\text{phi} \) is assumed to be in radians, not degrees. This code generates \(N \) snapshots received by an \(M \) element array. In general you would add noise to these snapshots as well. The above discussion provides a general idea of how to simulate the data required for Problem 11.4 below.

Problem 11.4 in Manolakis, Ingle, Kogon