INTEGRATION OF MACHINE LEARNING AND HUMAN LEARNING FOR TRAINING OPTIMIZATION IN ROBUST LINEAR REGRESSION

Xiaohua Li, Yu Chen
State University of New York at Binghamton
Department of ECE, Binghamton, NY 13902
{xli,ychen}@binghamton.edu

Kai Zeng
George Mason University
Department of ECE, Fairfax, VA 22030
kzeng2@gmu.edu

ABSTRACT

In this paper machine learning and human learning are applied jointly to optimize the training of linear regression. Human learning is exploited to label extra training data so as to resolve problems such as insufficient training and over-fitting. Considering the inevitable human errors in labeling, two machine learning algorithms are developed which optimize the selection of the extra training data and detect human errors during linear regression. The first algorithm assumes sparse human errors and implements a sparse optimization within a sequential active learning procedure. The second algorithm deals with non-sparse human errors. By exploiting the IRT (item response theory) to model the distribution of human errors, it reconstructs the training data set so that the human labeling errors become sparse. Simulations are conducted to show that the two algorithms are effective in resolving the insufficient training and human labeling error problems.

Index Terms— machine learning, human learning, item response theory, linear regression, active learning, training

1. INTRODUCTION

In today’s big data age, it is of paramount importance to develop efficient methods to extract information from the massive amounts of data. Since it is becoming prohibitively demanding for human to process the data directly, machine learning becomes popular. Linear regression is one of the important data processing tasks where machine learning has attracted great research effort and has found wide application [1].

While machine learning is dominating, the role of human learning should not be overlooked. It is well known that human plays important roles in machine learning design, feature selection, algorithm development, etc [2]. However, an interesting problem that has not been well-studied is how to combine machine learning algorithms and human learning principles together so as to take the advantages of each other. Today’s data volume may be too demanding for human. But human learning has some important characteristics that can be helpful to resolve many inherent challenges of machine learning, such as case representation, feature selection, over-fitting, generalization, etc.

To show the great benefits of integrating machine learning and human learning together, we focus on a typical task that needs both of them, i.e., training data optimization in robust linear regression. Supervised machine learning such as linear regression requires a human-labeled training data set that must be sufficiently long, well case-representative, and correctly labeled. However, considering the high complexity and dimensionality of many practical linear regression tasks, the initially provided training data may be insufficient, biased, skewed, and error-prone. This causes many problems, such as the well-known over-fitting problem in machine learning [2].

To resolve the insufficient training data issue, one of the popular approaches is to integrate human learning into machine learning algorithms for labeling more and better training data. This has been intensively investigated in terms of active learning [3]-[7]. In contrast, the human labeling error issue is more challenging. The cause of human error is complex, and may depend on the data processing task, noise level, human workload, human cognition capability, etc. In case the error probability is low enough so that the labeling errors become sparse, robust linear regression approaches such as [8] can be adapted to resolve this issue, which can estimate the sparse labeling errors while learning the linear regression vectors.

In this paper, we address these issues together within a framework of joint human learning and machine learning. Specifically, we consider the case when the initial training data labeled by human are both insufficient and error-prone. We will develop two new robust linear regression algorithms based on both the sequential active learning method [3] and the robust linear regression method [8]. We apply sequential active learning with human learning to look for extra and better training data under appropriate human workload considerations. To address the human error in training data labeling, we first integrate the sequential active learning algorithm with a sparse optimization to mitigate sparse human errors. Then, more importantly, we convert the non-sparse human error case into the sparse human error case based on the item response theory (IRT) [9].

The organization of this paper is as follows. In Section 2, we give the linear regression model. In Section 3, we develop the new algorithms with machine learning and human learning tightly coupled together. Simulations are conducted in Section 4, and conclusions are given in Section 5.

2. LINEAR REGRESSION MODEL WITH ACTIVE LEARNING

We consider the classical linear regression problem, where a scalar response y_i is to be predicted using N known (input) data samples $x_i = [x_{i,1}, \ldots, x_{i,N}]^T$, where $(\cdot)^T$ denotes transpose. The data model of the linear regression problem is

$$ y_i = x_i^T \theta + \epsilon_i, \quad i = 1, \ldots, I, $$

where θ is the $N \times 1$ regression vector, ϵ_i is the noise (or modeling error), and I is the total number of data records. We assume $i.i.d.$ Gaussian noise ϵ_i with zero-mean and variance σ^2_{ϵ}. As in typical supervised linear regression algorithms, we label and use the first L data records $(y_i, x_i), i = 1, \ldots, L$, as the training
data set. The values of y_i are labeled by human. Stacking together all the training data records, we have

$$y_L = X_L \theta + \epsilon_L,$$

where $X_L = [x_1, \ldots, x_L]^T$ is the $L \times N$ input data matrix, $y_L = [y_1, \ldots, y_L]^T$ is the $L \times 1$ labeled output data vector, and $\epsilon_L = [\epsilon_1, \ldots, \epsilon_L]^T$ is the Gaussian noise vector. A standard least-squares estimator gives the optimal estimation of θ as

$$\hat{\theta} = (X_L^H X_L)^+ X_L^H y_L,$$

where $(\cdot)^H$ denotes Hermitian, and $(\cdot)^+$ denotes pseudo-inverse. The use of pseudo-inverse rather than matrix inverse permits us to consider many special training data issues, such as labeling errors, skewed training data, or insufficient amount of training data, etc. These issues may make the matrix $X_L^H X_L$ singular or ill-conditioned.

The estimated $\hat{\theta}$ can then be used to predict the output $\hat{y}_i = x_i^T \hat{\theta}$ for all the unlabeled data x_i, $i = L + 1, \ldots, I$.

Active learning is a general methodology to deal with the insufficient training data issue. With active learning, linear regression algorithms select some extra data records from $\{x_i | L + 1 \leq i \leq I\}$ and ask human for labeling. These newly labeled data records will be used together with the initial training data set (y_L, X_L). Considering the human workload constraint, the number J of the newly labeled data records can not be too big. Therefore, active learning needs to find the extra data records that contribute the most to the existing training data set. The sequential active learning algorithm in [3] selects a data record in each iteration to maximize the difference between the new and old estimations of θ.

3. JOINT MACHINE LEARNING AND HUMAN LEARNING IN LINEAR REGRESSION

3.1. Combining sequential active learning and sparse optimization under a sparse human error model

Consider first the insufficient training issue in linear regression. We follow the sequential active learning algorithm of [3] to label J extra training data, where $J \leq I - L$. This can be implemented in J iterations. In each iteration j, where $j = 1, \ldots, J$, we need to select one new training data vector z_j from the set $X_j = \{x_i | L + 1 \leq i \leq \ell, x_i \neq z_j, 1 \leq i \leq \ell - 1\}$. There are $I - L - J + 1$ data vectors x_i in the set X_j.

Without loss of generality, let us consider the jth iteration. In the beginning of this iteration, before selecting z_j, we have the labeled training data set (y_{L+j-1}, X_{L+j-1}), where $y_{L+j-1} = [y_{L+j-1}^T, u_1, \ldots, u_j - 1]^T$, and u_i is the correct labeling of the data record $u_i = z_i^T \theta + \epsilon_i$. Note that $(u_i, z_i), i = 1, \ldots, j - 1$, are the extra training data selected and labeled in the previous $j - 1$ iterations. With this labeled data set, from (3) we have the estimation

$$\tilde{\theta}(j - 1) = \left(X_{L+j-1}^H X_{L+j-1} \right)^+ X_{L+j-1}^H y_{L+j-1}.$$

We let $\tilde{\theta}(0) \triangleq \tilde{\theta}$ of (3) as the initial condition.

To select the new training data vector z_j, we solve the following optimization

$$z_j = \arg \max_{z \in X_j} \| \tilde{\theta}(j) - \tilde{\theta}(j - 1) \|^2,$$

where the estimation

$$\tilde{\theta}(j) = \left(X_{L+j}^H X_{L+j} \right)^+ X_{L+j}^H \tilde{y}_{L+j}$$

is similar to (4) but with $\tilde{X}_{L+j} = \left[X_{L+j-1}^T, z_j^T \tilde{\theta}(j - 1) \right]^T$ and $\tilde{y}_{L+j} = [y_{L+j-1}^T, z_j^T \tilde{\theta}(j - 1)]^T$. Specifically, when calculating $\tilde{\theta}(j)$ for each candidate vector $z \in X_j$, we do not use the labeled value y_j yet, we simply use the estimation $z_j^T \tilde{\theta}(j - 1)$. A different and more complex way of estimating u_j was used in [3].

Since only one vector z_j is to be selected in the optimization (5), a straightforward way is to search exhaustively over all the $I - L - J + 1$ data vectors in the set X_j and select the one that gives the maximum value $||\tilde{\theta}(j) - \tilde{\theta}(j - 1)||^2$. The optimization (5) means that the vector z_j induces the maximum change in the linear regression vector estimation and thus may be the most informative one.

After z_j is selected, human learning kicks in to label the output u_j. Then we can insert the new training data (u_j, z_j) into the existing training data set to form (y_{L+j}, X_{L+j}) where $X_{L+j} = [X_{L+j-1}^T, z_j]^T$ and $y_{L+j} = [y_{L+j-1}^T, u_j]^T$, and calculate $\tilde{\theta}(j)$ similarly to (4). After this, the new iteration $j + 1$ will start.

We need to address the inevitable human labeling errors in this active learning procedure. Human errors can affect all the training data. Following the robust linear regression formulation of [8] which deal with outliers, we model the labeling error by o_i which changes the true value model (1) to the error labeling model

$$y_i = x_i^T \theta + \epsilon_i + o_i, \quad i = 1, \ldots, I.$$

Note that the labeled value y_i in (7) may no longer be the true value of (1). However, for notational convenience, we reuse the same variable y_i. Similarly, although o_i exists in the training data set only, we have defined o_i for all $1 \leq i \leq I$ since each i is the selection and labeling candidate in the sequential active learning procedure.

We assume that the vector $o_i = [o_1, \ldots, o_I]^T$ is sparse in this subsection. Non-sparse o_i will be addressed in the next subsection.

Consider again the jth iteration of the sequential active learning procedure. We need to revise (4) so as to estimate $\tilde{\theta}(j - 1)$ robustly from human labeling errors. This can be conducted by the joint optimization

$$\min_{\theta, o_{L+j-1}} \| y_{L+j-1} - o_{L+j-1} - X_{L+j-1} \theta \| + \lambda_0 \| o_{L+j-1} \|_0,$$

which estimates $\tilde{\theta}(j - 1)$ and the sparse labeling error vector $o_{L+j-1} = [o_1, \ldots, o_{L+j-1}]^T$ simultaneously. The ℓ_0 norm $\| o_{L+j-1} \|_0$ is to guarantee the sparsity of the human error vector o_{L+j-1}. By choosing appropriate weighting coefficient λ_0, we can make o_{L+j-1} to have various sparsity values.

Because ℓ_0 norm is not convex, we can replace it by the convex ℓ_1 norm. Then the optimization (8) is changed to

$$\min_{\theta, o_{L+j-1}} \| y_{L+j-1} - o_{L+j-1} - X_{L+j-1} \theta \| + \lambda_1 \| o_{L+j-1} \|_1,$$

which is convex in either θ or o_{L+j-1}.

As shown in [8], a two-step procedure can find the solution to (9). First, conditioned on θ, we estimate o_{L+j-1} from the convex optimization

$$\hat{o}_{L+j-1} = \arg \min_{o_{L+j-1}} \| y_{L+j-1} - o_{L+j-1} - X_{L+j-1} \theta \|
+ \lambda_1 \| o_{L+j-1} \|_1.$$
The estimation \(\hat{\theta}(j - 1) \) as
\[
\hat{\theta}(j - 1) = \left(X_{L+j-1}^H X_{L+j-1} \right)^+ X_{L+j-1}^H (y_{L+j-1} - \tilde{O}_{L+j-1}).
\]
Furthermore, we can replace \(\theta \) of (10) by \(\hat{\theta}(j - 1) \) of (11), which changes the optimization (10) to
\[
\tilde{O}_{L+j-1} = \arg \min_{O_{L+j-1}} \| (I_{L+j-1} - X_{L+j-1} X_{L+j-1}^H) \| y_{L+j-1} - O_{L+j-1} \| + \lambda_j \| O_{L+j-1} \|_1,
\]
where \(I_{L+j-1} \) is an \((L + j - 1) \times (L + j - 1) \) dimensional identity matrix. The vector \(\tilde{O}_{L+j-1} \) now depends on the training data set \((y_{L+j-1}, X_{L+j}) \) only, not on the regression vector \(\theta \).

Therefore, to solve the optimization (9), we first solve (12) to obtain \(\tilde{O}_{L+j-1} \) via convex optimization, and then use (11) to calculate \(\hat{\theta}(j - 1) \). This replaces (4) in the sequential active learning procedure.

To conduct the next step of the sequential active learning, i.e., optimizing (5) so as to select the new data record \(z_j \), we need to evaluate \(\hat{\theta}(j) \). Based on (6) and (11), we have
\[
\hat{\theta}(j) = \left(\tilde{X}^H_{L+j} \tilde{X}_{L+j} \right)^+ \tilde{X}^H_{L+j} \left[Y_{L+j-1} - \tilde{O}_{L+j-1} \right].
\]
The estimation \(\tilde{O}_{L+j-1} \) of (12) is still used in (13).

In summary, the algorithm for the sequential selection of the extra training data while mitigating the sparse human labeling errors is given below.

Algorithm 1: Linear regression with sparse human error

1) Initialize: linear regression with training \((y_L, X_L) \) (12)(11)
2) For iteration \(j = 1, 2, \ldots, J \), do
 1) for each \(z \in X_L \), calculate \(\theta(j) \) (13),
 2) select the optimal \(z_j \) that maximizes (5),
 3) label \(u_j \) for new training data \((u_j, z_j) \) (human learning),
 4) form \((y_{L+j}, X_{L+j}) \), update linear regression (12)(11).
3) Output \(\theta(J) \) and linear prediction \(\hat{y}_L = X_L \theta(J) \).

Inside this machine learning algorithm, the step (3) involves human learning to label the extra training data. There are \(J \) iterations to find \(J \) extra training data, and there is a convex optimization in each iteration. The value \(J \) can be adjusted according to human workload and human error principles.

3.2. Robust linear regression for non-sparse human errors

One of the major limitations of Algorithm 1 is that the labeling error vector \(\tilde{O}_{L+j} \) has to be sparse in order for the convex sparse optimization to work. There are many cases that human errors are non-sparse. In this subsection, we develop a way to reconstruct a new training data set with sparse human labeling errors. This is conducted by removing the training data that are more likely to have errors. By using those data that are less likely to have errors, we can effectively change the non-sparse error cases into the sparse case so Algorithm 1 can still be used.

We model the human labeling error by the item response theory (IRT). The basic idea of IRT is to use some item response function (IRF) to describe the probability for human to make correct decisions on a task [9]. As a typical IRF, a person with cognition capability (or intelligence) \(s \) can label the \(i \)th training data correctly with probability
\[
q_i = c_i + \frac{1 - c_i}{1 + e^{-a_i(x_i - b_i)}},
\]
where the parameter \(b_i \) denotes the difficulty level of labeling the \(i \)th data, \(c_i \) and \(a_i \) are systematic parameters regarding the data labeling task. We assume that \(b_i \) depends only on the noise magnitude \(|\epsilon_i| \), since higher noise makes human labeling more difficult. The probability of error-labeling of the data record \((y_i, x_i) \) is then
\[
p(|\epsilon_i|) = (1 - c_i) \left(1 - \frac{1}{1 + e^{-a_i(x_i - |\epsilon_i|)}} \right),
\]
which is an increasing function of \(|\epsilon_i| \).

From the model (7), if the data are real, then \(|\epsilon_i| \) has folded normal distribution with probability density function
\[
f(x) = \frac{2}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}.
\]
It has mean \(\sigma \sqrt{2/\pi} \) and variance \((\pi - 2)\sigma^2/\pi \). If the data are complex, then \(|\epsilon_i| \) has Rayleigh distribution with probability density function
\[
f(x) = \frac{x}{\sigma^2 e^{-x^2/2\sigma^2}},\]
whose mean and variance are \(\sigma \sqrt{\pi/2} \) and \(4 - \pi \sigma^2/2 \), respectively.

The percentage of error-labeled training data, or the average probability for a data to be labeled in error, is
\[
\mathbb{P} = \int_0^\infty p(x) f(x) dx.
\]
We have \(\mathbb{P} \in [0, 1] \). \((L + j) \mathbb{P} \) is the number of non-zero entries in \(\tilde{O}_{L+j} \). Obviously, a small \(\mathbb{P} \) means sparse labeling error while a large \(\mathbb{P} \) means non-sparse labeling error. Note that the value of the error \(a_i \) can have various distributions which are assumed unknown in this paper.

Consider the \(j \)th iteration of the sequential active learning with labeling error mitigation. Define \(v_{L+j-1} = y_{L+j-1} - X_{L+j-1} \theta = \tilde{O}_{L+j-1} + \epsilon_{L+j-1} \), which contains all the error and noise information. Replacing \(\theta \) with the standard linear regression vector estimation \(\hat{\theta} \) of (3), we have
\[
v_{L+j-1} = \left(I_{L+j-1} - X_{L+j-1} X_{L+j-1}^H \right) y_{L+j-1}.
\]
Then we can use \(v_{L+j-1} = [v_1, \ldots, v_{L+j-1}] \) of (17) to determine approximately whether each \(v_i \) has error or not.

Without the error \(a_i \), the distribution of \(v_i = \epsilon_i \) is \(N(0, \sigma^2) \). With the error \(a_i \), the distribution of \(v_i = a_i + \epsilon_i \) is the convolution of the distributions of \(\epsilon_i \) and \(a_i \) which is unknown. Nevertheless, based on the error-labeling distribution \(p(|\epsilon_i|) \) of (15), to reduce the percentage of labeling errors from \(\mathbb{P} \) to \(\eta \mathbb{P} \), we just need to find a threshold value \(\gamma \) such that
\[
(1 - p(|\epsilon_i|) \mathbb{P}) \mathbb{P} < \gamma \]
\[
> (1 - \eta \mathbb{P}) \mathbb{P} \]
\[
\gamma \geq \gamma.
\]
With the threshold \(\gamma \), we select all the labeled data that satisfy \(|v_i| < \gamma \) to construct the new training data set. All the data with \(|v_i| \geq \gamma \) are removed from the new training data set.

To formulate the new learning framework, we introduce a diagonal \((L + j - 1) \times (L + j - 1) \) weighting matrix \(W \). If \(a_i \) can have value \(|a_i| \) much larger than \(|y_i| \), it is better to apply hard decision when selecting the training data. Therefore, we use \(W \) with diagonal elements
\[
w_{i,i} = \begin{cases}
1, & \text{if } |v_i| < \gamma \\
0, & \text{if } |v_i| \geq \gamma
\end{cases}
\]
On the other hand, if the value $|o_i|$ is mostly comparable to $|y_i|$, then a soft-decision diagonal matrix W with $w_{i,i} = P[|o_i| < \gamma]$ can also be used.

With the weighting matrix W, the Algorithm 1 can be easily changed to use just the new training data set. Specifically, the sparsification (9) becomes

$$
\min_{o_{L+j-1}} \|W(y_{L+j-1} - o_{L+j-1} - X_{L+j-1}\theta)\|_1 + \lambda_1\|W_{o_{L+j-1}}\|_1.
$$

The solution (12)(11) can be changed to

$$
o_{L+j-1} = \arg \min_{o_{L+j-1}} \|I - X_{L+j-1}(X_{L+j-1}^H + 1) - X_{L+j-1}^H y_{L+j-1} + \lambda_1\|W_{o_{L+j-1}}\|_1.
$$

$$
\theta(j-1) = (X_{L+j-1}^H X_{L+j-1})^{-\frac{1}{2}} X_{L+j-1}^H y_{L+j-1} - o_{L+j-1}.
$$

Note that even though o_{L+j-1} may not be a sparse vector, $W_{o_{L+j-1}}$ is sparse. In practical implementations, we can simply remove those data that are not used from the convex optimization.

In summary, we can modify Algorithm 1 into the following Algorithm 2 which can work with training data that have non-sparse labeling errors.

\begin{algorithm}
\caption{Linear regression with sparsity recovery}
i) Initialize: Determine W based on (17)-(19);
Linear regression with training (y_L, X_L) (21) (22).

ii) For iteration $j = 1, 2, \cdots, J$ do

1)-4) same as 1)-4) of Algorithm 1, except using (21)(22).
5) Update weight matrix W using training (y_{L+j}, X_{L+j}).
\end{algorithm}

4. SIMULATIONS

To verify the performance of Algorithm 1 in resolving problems of insufficient training and sparse labeling errors, we used simulation settings similar to [8]. We let $I = 100$, $N = 10$, $\theta \sim \mathcal{N}(10 \times I_N, I_N)$, $x_i \sim \mathcal{N}(0, 1)$, $e_i \sim \mathcal{N}(0, 1)$. Human labeling errors were modeled with Laplacian distribution $o_i \sim \mathcal{L}(0, 10)$. The initial training data set size was $L = 15$, and an extra $J = 10$ training data were to be found in active learning.

We compared our new algorithm (Algorithm 1) with four other algorithms: KeepOut:L which just implemented (3) with L training data; KeepOut:L+J which implemented (3) with $L + J$ training data; KeepOut:Active which implemented the active learning algorithm of [3]; and RmvOut:L which implemented [8] with L training data. Note that the three KeepOut algorithms did not use any way to mitigate labeling errors. We evaluated NRMSE (normalized root mean square error) of the regression vector estimation $\sqrt{E[\|\theta - \hat{\theta}\|^2]}$ over 100 runs of experiments for each labeling error probability. The simulation results in Fig. 1 clearly show the superior performance of our new Algorithm 1 in robust linear regression.

Next, we evaluated our Algorithm 2 in resolving the problems of insufficient training and non-sparse labeling errors. We set $I = 500$. While the other algorithms used 10% data for training, our Algorithm 2 used 15 initial training data and searched for more extra training data. Human errors were introduced based on the IRF with appropriate parameters to create various human labeling error probabilities. Simulation results in Fig. 2 clearly show that our algorithm had superior performance because of both using active learning to recruit more training data and using the IRT model to remove those training data with high error probabilities.

5. CONCLUSIONS

In this paper we formulated a joint machine learning and human learning framework for linear regression so as to enhance the robustness to insufficient and error training data. Machine learning is applied to search for more and better training data and to estimate human labeling errors, while human learning is applied to label the extra training data. The IRT (item response theory) model of human errors is applied for removing potentially error-prone data so as to keep the sparsity of the labeling errors. Simulations are conducted to verify the performance of the proposed algorithms.

Acknowledgement: The authors thank Prof. K. J. Kurtz of Dept. of Psychology, State University of New York at Binghamton, for helpful discussion, and NSF for support via grants CNS-1443885 and CNS-1464487.
6. REFERENCES

