Midterm Exam

ECE 448
Spring 2008

Wednesday Section

(15 points)

Instructions
Zip all your deliverables into an archive <last_name>.zip and submit it through WebCT no later than Wednesday, March 5, 10:00 PM EST.

Introduction

Design a circuit that accepts samples from two A/D converters, provided at the inputs A and B, respectively, as 8-bit unsigned numbers. The samples are generated by each A/D converter in groups of four, with each member of a group being separated by 20 ns. A period of 200 ns separates each group of samples. The circuit should compute an average value of the four samples within each group, and then compare the average value of input A with that of input B. Upon computing the average values of A and B, the circuit then determines which of the two is greater. If A is greater than B, the value of COUNT is increased by one; if B is greater than A, the value of COUNT is decreased by one; and if the two values are equal, the value of COUNT does not change. When COUNT reaches a threshold of +5, it should not be able to increment to +6. Instead of incrementing, the OVERFLOW output should be set high. Similarly, when COUNT reaches -5, it should no longer decrement; instead UNDERFLOW will be set high. COUNT, OVERFLOW, and UNDERFLOW should remain unchanged in the period between two consecutive comparisons. When one iteration of the comparison algorithm has been completed, NEW_COUNT should be set high for one clock cycle.

The pseudocode for calculation is shown below:

```
COUNT = 0
While (TRUE)
    Wait until RECORD_DATA = ‘1’
    A_Reg = 0
    B_Reg = 0
    For i in 0 to 3 loop
        A_Reg = A_IN + A_Reg
        B_Reg = B_IN + B_Reg
    End loop
    A_Average = A_Reg / 4
    B_Average = B_Reg / 4
    If A_Average > B_Average
        If COUNT == 5
            UNDERFLOW = ‘0’
            OVERFLOW = ‘1’
            COUNT = COUNT
        Else
```
UNDERFLOW = '0'
OVERFLOW = '0'
COUNT++
End if
Else if B_Average > A_Average
 If COUNT == -5
 UNDERFLOW = '1'
 COUNT = COUNT
 OVERFLOW = '0'
 Else
 OVERFLOW = '1'
 UNDERFLOW = '1'
 COUNT—
 End if
Else
 COUNT = COUNT
 UNDERFLOW = '0'
 OVERFLOW = '0'
NEW_COUNT = '1'
End While
Assume the following interface to your circuit:

<table>
<thead>
<tr>
<th>Port</th>
<th>Mode</th>
<th>Width</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOCK</td>
<td>Input</td>
<td>1</td>
<td>System clock</td>
</tr>
<tr>
<td>RESET</td>
<td>Input</td>
<td>1</td>
<td>System reset</td>
</tr>
<tr>
<td>A_IN</td>
<td>Input</td>
<td>8</td>
<td>Input A for samples produced by the first A/D converter</td>
</tr>
<tr>
<td>B_IN</td>
<td>Input</td>
<td>8</td>
<td>Input B for samples produced by the second A/D converter</td>
</tr>
<tr>
<td>RECORD_DATA</td>
<td>Input</td>
<td>1</td>
<td>Signal set to high when the first sample of each group of four is present at the inputs A and B</td>
</tr>
<tr>
<td>COUNT</td>
<td>Output</td>
<td>4</td>
<td>Value of the special Counter</td>
</tr>
<tr>
<td>OVERFLOW</td>
<td>Output</td>
<td>1</td>
<td>Indication of an OVERFLOW</td>
</tr>
<tr>
<td>UNDERFLOW</td>
<td>Output</td>
<td>1</td>
<td>Indication of an UNDERFLOW</td>
</tr>
<tr>
<td>NEW_COUNT</td>
<td>Output</td>
<td>1</td>
<td>Set to HIGH for one clock cycle when a new value of COUNT is computed</td>
</tr>
</tbody>
</table>

The execution unit for the circuit is shown below. Note that all inputs that are in capital letters are external inputs. Inputs that are written with lowercase letters are inputs from a control unit.
The timing waveforms for a series of computations are shown below: