Problem 1 - ASM chart

Dataflow VHDL code for the output function computing p, r, and y, as a function of the state S, and the inputs a and b:

\[
\begin{align*}
p &\leq '1' \text{ when } (S = S1) \text{ or } (S = S3) \text{ else } '0'; \\
r &\leq '1' \text{ when } ((S = S1) \text{ and } (b = '0')) \text{ or } ((S = S2) \text{ and } (b = '1')) \text{ or } ((S = S3) \text{ and } (b = '1')) \text{ or } ((S = S4) \text{ and } (b = '0')) \text{ else } '0'; \\
y &\leq '1' \text{ when } (S = S4) \text{ and } (b = '0') \text{ and } (a = '1') \text{ else } '0';
\end{align*}
\]
Problem 2 – Block Diagram of Combinational Logic
16 x 1 ROM

Memory Map

<table>
<thead>
<tr>
<th>ADDR</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>
library ieee;
use ieee.std_logic_1164.all;

entity misr is
 generic (C : std_logic_vector(7 downto 0));
 port (-- inputs
 clk : in std_logic;
 rst : in std_logic;
 en : in std_logic;
 D : in std_logic_vector (7 downto 0);
 -- outputs
 Q_out : out std_logic_vector (7 downto 0)
);
end misr;

architecture mixed of misr is

-- intermediate signals
 signal Q : std_logic_vector (7 downto 0);
 signal Q0_replicated : std_logic_vector (7 downto 0);
 signal d_ff_in : std_logic_vector (7 downto 0);

begin
 Q0_replicated <= (others => Q(0));
 d_ff_in <= D xor ('0' & Q(7 downto 1)) xor (C and Q0_replicated);

 -- D flip flop operation
 D_FFs: process (rst, clk)
 begin
 if (rst = '1') then
 Q <= (others => '0');
 elsif rising_edge(clk) then
 if(en = '1') then
 Q <= d_ff_in;
 end if;
 end if;
 end process;
 Q_out <= Q;
end mixed;
Problem 4 – FPGA Resources
library ieee;
use ieee.std_logic_1164.all;

entity debouncer_tb is
end debouncer_tb;

architecture behavioral of debouncer_tb is

 -- inputs
 signal clk : std_logic := '0';
 signal rst : std_logic;
 signal input: std_logic;

 -- outputs
 signal output : std_logic;

 -- constant definitions
 constant clk_period : time := 10 ns;
 constant rst_length : time := 50 ns;
 constant min_before_pulse : time := 100 ns;
 constant pulse_width : time := 500 ns;
 constant bounce_period : time := 40 ns;

begin

 debouncer_inst: entity work.debouncer
 generic map (
 K => 4,
 DD => 15)
 port map (
 clk => clk,
 rst => rst,
 input => input,
 output => output
);

 clk <= not clk after clk_period/2;

 rst_process: process
 begin
 rst <= '1';
 wait for rst_length;
 rst <= '0';
 wait;
 end process;

input_process: process

begin

 input <= '0';
 wait for min_beforepulse;
 wait until falling_edge(clk);

 for i in 0 to 2 loop
 input <= '1';
 wait for bounce_period/2;
 input <= '0';
 wait for bounce_period/2;
 end loop;

 input <= '1';
 wait for pulse_width;

 for i in 0 to 2 loop
 input <= '0';
 wait for bounce_period/2;
 input <= '1';
 wait for bounce_period/2;
 end loop;

 input <= '0';
 wait;

end process;

end behavioral;