1. How many data words of the size of 32 bits can be held in a single Block RAM in Spartan 6 FPGA?

How many parity bits can accompany each data word?

2. Based on your knowledge of the internal structure of the Spartan 6 FPGAs, and assuming that
 A. The Debouncer circuit shown in Figs. 1 and 2 is implemented using CLB slices only,
 B. Generics k and DD have the following values: k=24, DD = 10,000,000,
 perform the following tasks:

 a. In the diagrams below, please circle any portion of logic that can be implemented using:
 • n Multipurpose Look-up Tables – MLUTs, or
 • n Storage Elements – SE,
 where \(n \geq 1 \).
 b. Next to each circle write
 • \(n \) MLUT, <MLUT_mode>, or
 • \(n \) SE, <SE_mode>,
 where
 \(n \) is the number of the respective FPGA structures (MLUTs or SEs), and
 \(<MLUT_mode> = \text{ROM (logic), RAM, or SR (shift register)},
 \langle SE_mode \rangle = \text{FF (flip-flop) or LT (latch).}
 c. For the arithmetic components, implemented using Carry Logic, please circle these components, and write next to them
 \(n \) (CL+MLUT),
 where \(n \) is the number of the Carry Logic stages used.

 Hint: One Carry Logic stage and one associated MLUT can be used to implement one Full Adder.
Fig. 1: Implementation of the Counter in the Debouncer circuit.

Fig. 2: Block diagram of the Debouncer circuit.
3. Fill in the blanks in the following code describing the circuit shown below:

Circuit

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY Example1 IS
  PORT ( w : IN STD_LOGIC_VECTOR(0 TO 15);
         s : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
         f : OUT STD_LOGIC );
END Example1;
```
ARCHITECTURE structural OF Example1 IS

COMPONENT mux4to1

PORT (w0, w1, w2, w3 : IN STD_LOGIC ;
 s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
 f : OUT STD_LOGIC) ;
END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;
BEGIN
G1: FOR i IN TO GENERATE
 Muxes: PORT MAP (........... , , ,
 , , ,);
 END GENERATE ;
Mux5: PORT MAP (........... , , ,
 , , ,);
END structural;

4. For the VHDL code given below, perform the following TWO tasks
a. Supplement the code with the proper contents of the sensitivity list
b. Draw a block diagram of the corresponding digital circuit using standard
 logic components introduced in this class (e.g., muxes, decoders, etc.)

process(..........................)
begin
 if video_on='0' then
 graph_rgb <= "000"; --blank
 else
 if wall_on='1' then
 graph_rgb <= wall_rgb;
 elsif bar_on='1' then
 graph_rgb <= bar_rgb;
 elsif sq_ball_on='1' then
 graph_rgb <= ball_rgb;
 else
 graph_rgb <= "110"; -- yellow background
 end if;
 end if;
end process;