Welcome to Single-Chip Microcomputers. This course expands your knowledge of microprocessors from ECE 445 and puts them into a system context. You will be introduced to the principle of a microcontroller, which comprises all elements of a basic computer system on a single chip, i.e., microprocessor, memory and I/O devices. Based upon this single-chip microcomputer, you will learn how to interface it with other devices, such as sensors, keypads, and displays. This course also covers real-time control issues, assembly language programming for control, design of control software, input/output methods, design tools, and available single-chip microcomputers. In the associated lab you will be designing and constructing systems including a single-chip microcomputer and ancillary hardware to implement a complete control system.

Topics: Include introduction to the MSP 430, software development using C and assembly, polling, interrupts, timers, real time clock (RTC), ADC, DCA, serial peripheral interface (SPI), I2C, RS232.

Faculty:
Classes and Coordination Jens-Peter Kaps jkaps@gmu.edu

Lab Instructors:
Monday Labs Ahmad Salman asalman@gmu.edu
Tuesday Labs Ambarish Vyas avyas2@gmu.edu
Wednesday Labs Ambarish Vyas avyas2@gmu.edu
Thursday Labs Jason Bales tba

Lectures:
5:55 – 7:10 pm, Monday and Wednesday Enterprise 276

Labs:
7:20 – 10:00 pm, Monday, Tuesday, Wednesday, Thursday ENGR 3208

Class Web Page:
http://ece.gmu.edu/~jkaps/courses/ece447 and on Blackboard

Textbooks:

Hardware:
Each student is expected to purchase a lab kit

Software:
IAR Kickstart Environment
http://focus.ti.com/docs/toolsw/folders/print/iar-kickstart.html
Code Composer Studio v4 http://www.ti.com/ccs

Office Hours:
Jens-Peter Kaps Monday 2:00 – 3:00 pm ENGR 3222
Tuesday 3:00 – 4:00 pm ENGR 3222
Ahmad Salman Wednesday 2:00 – 3:00 pm ENGR 3208
Ambarish Vyas Tuesday 2:00 – 3:00 pm ENGR 3208
Saturday 12:00 – 1:00 pm ENGR 3208
Jason Bales Thursday 5:30 – 7:00 pm ENGR 3208
Please check the class web page for updates to this office hour schedule. The best way to contact us outside class and office hours is via e-mail or for questions that might interest several students via the discussion group on Blackboard.

Required Background:

- **ECE 445** Computer Organization (grade C or better)
- **ECE 332** Digital Electronics and Logic Design Lab (grade C or better)
 and either
- **CS 367** Computer Systems and Programming (grade C or better)
 or
- **CS 222** Computer Programming for Engineers (grade C or better)

Reading Assignments

The reading assignments are shown in the class calendar in the rightmost column, first row in a week. The refer to sections in the Davies text that need to be read by the beginning of the week. Reading assignments for the weeks of November 21st and November 28th refer to documents that can be retrieved from the TI website of Blackboard. These documents should be printed and reviewed.

Quizzes:

There will be up to 6 quizzes during the course of this class. These quizzes will be based on reading assignments and material covered in class. They will be not be announced in advance. Each quiz will be up to 20 minutes long and start at the beginning of class. The time of a quiz will not be extended for students arriving late.

Labs:

This course features a senior lab component. Students in ECE 447 will be granted access to the ENGR Room 3208 computer lab to complete their projects More information about the labs can be found in a separate lab syllabus.

Exams:

There will be two exams during the course. There will be NO make-up exams. (See Dr. Kaps for an exception at least 4 weeks before the exam.) Students who are more than 15 minutes late for an exam may not be admitted and will be assigned a grade of zero for the exam.

- **Midterm Exam**: Wednesday October 26th.
- **Final Exam**: Monday December 19th, **4:30pm – 7:15pm**.

Grading:

The final grade is based on a weighted sum of your performance in exams, homeworks, recitations and class participation:

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Midterm Lab Exam</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
Credits:
This course has 3 lecture hours, 3 lab hours and a total of 4 credits. For EE students, this course counts as 1 technical elective and 1 advanced laboratory course.

Honor Code:
All rules of the GMU Honor Code system will be in effect. You must review the rules and be familiar with them.
You are encouraged to discuss homework problems and projects with other students and/or obtain the assistance of the TA. Nevertheless, you must write down your own homework solutions which represent your understanding of the material. Projects must be completed individually. No part of a project submission can be copied from another student of the class or any other source.
Duplicating someone else’s work such as but not limited to homework solutions, hardware/software designs, diagrams, source code, project reports, and exam notes, is considered cheating. If you use material from other sources such as but not limited to the web, books, journals, data sheets, etc. you must reference the source. Honor code violations will be followed up with full force.

Classroom Etiquette:
Cellphones, pagers have to be put into silent mode. If you have an emergency need to answer a call please quietly leave the room BEFORE answering the call. Lectures may not be recorded without express written permission from the instructor.

Students with Disabilities
If you need special assistance, please inform the instructor within the first 3 weeks of classes so that we can work something out.

The Course Syllabus is Subject to Change