SORTING circuit
Sorting - Required Interface

Clock
Resetn
DataIn
RAdd
WrInit
S (0=initialization 1=computations)
Rd

Sort

DataOut
Done

N
N
Sorting - Required Interface

<table>
<thead>
<tr>
<th>Port</th>
<th>Width</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk</td>
<td>1</td>
<td>System clock</td>
</tr>
<tr>
<td>Resetn</td>
<td>1</td>
<td>System reset – clears internal registers. Active low.</td>
</tr>
<tr>
<td>DataIn</td>
<td>N</td>
<td>Input data bus</td>
</tr>
<tr>
<td>RAdd</td>
<td>L</td>
<td>Address of the internal memory where input data is stored</td>
</tr>
<tr>
<td>WrInit</td>
<td>1</td>
<td>Synchronous write control signal</td>
</tr>
<tr>
<td>s</td>
<td>1</td>
<td>Operating mode: 0 = initialization, 1 = computations.</td>
</tr>
<tr>
<td>Rd</td>
<td>1</td>
<td>Read enable. 0 = high impedance on the output bus, 1 = valid output on the output data bus.</td>
</tr>
<tr>
<td>DataOut</td>
<td>N</td>
<td>Output data bus used to read results</td>
</tr>
<tr>
<td>Done</td>
<td>1</td>
<td>Asserted when all results are ready</td>
</tr>
</tbody>
</table>
Simulation results for the sort operation (1)
Loading memory and starting sorting
Simulation results for the sort operation (2) Completing sorting and reading out memory
Sorting - Example

Before Sorting

<table>
<thead>
<tr>
<th>Address</th>
<th>i=0</th>
<th>i=0</th>
<th>i=0</th>
<th>i=1</th>
<th>i=1</th>
<th>i=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>j=1</td>
<td>3</td>
<td>j=2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>j=2</td>
<td>2</td>
<td>j=3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>j=3</td>
<td>4</td>
<td>j=2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>j=3</td>
<td>4</td>
<td>j=3</td>
<td>3</td>
</tr>
</tbody>
</table>

During Sorting

<table>
<thead>
<tr>
<th>Address</th>
<th>i=0</th>
<th>i=0</th>
<th>i=0</th>
<th>i=1</th>
<th>i=1</th>
<th>i=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

After Sorting

<table>
<thead>
<tr>
<th>Address</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

Legend:
- Position of memory indexed by i: M_i
- Position of memory indexed by j: M_j
Pseudocode

FOR k = 4
[load input data]
wait for s=1
for i = 0 to 2 do
 A = M_i;
 for j = i + 1 to 3 do
 B = M_j;
 if B < A then
 M_i = B;
 M_j = A;
 A = M_i;
 endif;
 endfor;
endfor;
Done
wait for s=0
[read output data]
go to the beginning

FOR any k ≥ 2
[load input data]
wait for s=1
for i = 0 to k-2 do
 A = M_i;
 for j = i + 1 to k - 1 do
 B = M_j;
 if B < A then
 M_i = B;
 M_j = A;
 A = M_i;
 endif;
 endfor;
endfor;
Done
wait for s=0
[read output data]
go to the beginning