ECE 545—Digital System Design with VHDL

Lecture 1A

Digital Logic Refresher

Part A – Combinational Logic Building Blocks

Lecture Roadmap – Combinational Logic

- Basic Logic Review
 - Basic Gates
 - De Morgan’s Law
- Combinational Logic Building Blocks
 - Multiplexers
 - Decoders, Demultiplexers
 - Encoders, Priority Encoders
 - Arithmetic circuits
 - ROM: Implementing combinational logic using ROM.
 - Tri-state buffers.

Textbook References

- Combinational Logic Review
 - Stephen Brown and Zvonko Vranesic,
 Fundamentals of Digital Logic with VHDL Design, 2nd or 3rd Edition
 - Chapter 2 Introduction to Logic Circuits (2.1–2.8 only)
 - Chapter 6 Combinational-Circuit Building Blocks (6.1–6.5 only)
 - OR your undergraduate digital logic textbook (chapters on combinational logic)

Basic Logic Review

*some slides modified from:
S. Dandamudi, “Fundamentals of Computer Organization and Design”*

Rules

- If you believe that you know a correct answer, please raise your hand
- I will select one or more students
 (independently whether an answer given by the first student is correct or incorrect)
- Please, identify yourself by first name and give an answer
- **Correct answer = 1 bonus point**

Basic Logic Gates (2-input versions)
Basic Logic Gates Generalized

- Simple logic gates
 - AND \(\rightarrow \) 0 if one or more inputs is 0
 - OR \(\rightarrow \) 1 if one or more inputs is 1
 - NAND = AND + NOT
 - 1 if one or more inputs is 0
 - NOR = OR + NOT
 - 0 if one or more input is 1
 - XOR \(\rightarrow \) 1 if an odd number of inputs is 1
 - XNOR \(\rightarrow \) 1 if an even number of inputs is 1
 - NAND and NOR gates require fewer transistors than AND and OR in standard CMOS
 - Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination

Number of Functions

- Number of functions
 - With \(N \) logical variables, we can define \(2^N \) functions
 - Some of them are useful
 - AND, NAND, NOR, XOR, ...
 - Some are not useful:
 - Output is always 1
 - Output is always 0
 - “Number of functions” definition is useful in proving completeness property

Complete Set of Gates

- Complete sets
 - A set of gates is complete
 - if we can implement any logic function using only the type of gates in the set
 - Some example complete sets
 - \{AND, OR, NOT\} — Not a minimal complete set
 - \{AND, NOT\}
 - \{OR, NOT\}
 - \{NAND\}
 - \{NOR\}
 - Minimal complete set
 - A complete set with no redundant elements.

NAND as a Complete Set

- Proving NAND gate is universal

Logic Functions

- Logic functions can be expressed in several ways:
 - Truth table
 - Logical expressions
 - Graphical schematic form
 - HDL code
- Example:
 - Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function

Alternative Representations of Logic Function

<table>
<thead>
<tr>
<th>Truth table</th>
<th>Logical expression form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Graphical schematic form

HDL code: \(F = (A \land B) \lor (B \land C) \lor (A \land C) \)
Boolean Algebra

<table>
<thead>
<tr>
<th>Name</th>
<th>AND version</th>
<th>OR version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>$x \cdot 1 = x$</td>
<td>$x + 0 = x$</td>
</tr>
<tr>
<td>Complement</td>
<td>$x \cdot x' = 0$</td>
<td>$x + x' = 1$</td>
</tr>
<tr>
<td>Commutative</td>
<td>$x \cdot y = y \cdot x$</td>
<td>$x + y = y + x$</td>
</tr>
<tr>
<td>Distribution</td>
<td>$x \cdot (y+z) = x \cdot y + x \cdot z$</td>
<td>$x + (y \cdot z) = (x + y) \cdot (x + z)$</td>
</tr>
<tr>
<td>Idempotent</td>
<td>$x \cdot x = x$</td>
<td>$x + x = x$</td>
</tr>
<tr>
<td>Null</td>
<td>$x \cdot 0 = 0$</td>
<td>$x + 1 = 1$</td>
</tr>
</tbody>
</table>

Boolean Algebra (cont’d)

- **Boolean identities (cont’d)**

<table>
<thead>
<tr>
<th>Name</th>
<th>AND version</th>
<th>OR version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involution</td>
<td>$x = (x')'$</td>
<td>---</td>
</tr>
<tr>
<td>Absorption</td>
<td>$x \cdot (x+y) = x$</td>
<td>$x + (x \cdot y) = x$</td>
</tr>
<tr>
<td>Associative</td>
<td>$x \cdot (y \cdot z) = (x \cdot y) \cdot z$</td>
<td>$x + (y + z) = (x + y) + z$</td>
</tr>
</tbody>
</table>

de Morgan $x \cdot y)' = x' + y'$ $x + y)' = x' \cdot y'$

(de Morgan’s law in particular is very useful)

Alternative symbols for NAND and NOR

- NAND
- NOR

Deriving Equivalent Expressions

- Using NAND gates
 - Get an equivalent expression
 $\overline{A \cdot B + C \cdot D} = (\overline{A \cdot B} + \overline{C \cdot D})'$
 - Using de Morgan’s law
 $A \cdot B + C \cdot D = (\overline{\overline{A} \cdot \overline{B}} \cdot \overline{\overline{C} \cdot \overline{D}})'$
 - Can be generalized
 - Example: Majority function
 $A \cdot B \cdot C + A \cdot C = ((A \cdot B)' \cdot (B \cdot C)' \cdot (A \cdot C)')'$

Majority Function Using Other Gates

- Majority function

Combinational Logic Building Blocks

Some slides modified from:
- S. Dandamudi, “Fundamentals of Computer Organization and Design”
Multiplexers

- multiplexer
 - n binary inputs (binary input = 1-bit input)
 - \(\log_2 n \) binary selection inputs
 - 1 binary output
 - Function: one of n inputs is placed onto output
 - Called n-to-1 multiplexer

2-to-1 Multiplexer

- When drawing schematics, can draw multi-bit multiplexers
- Example: 8-bit 4-to-1 multiplexer
 - 4 inputs (each 8 bits)
 - 1 output (8 bits)
 - 2 selection bits
 - Can also have multi-bit 2-to-1 muxes, 16-to-1 muxes, etc.

Decoders

- Decoder
 - n binary inputs
 - \(2^n \) binary outputs
 - Function: decode encoded information
 - If enable=1, one output is asserted high, the other outputs are asserted low
 - If enable=0, all outputs asserted low
 - Often, enable pin is not needed (i.e. the decoder is always enabled)
 - Called n-to-2^n decoder
 - Can consider n binary inputs as a single n-bit input
 - Can consider 2^n binary outputs as a single 2^n-bit output
 - Decoders are often used for RAM/ROM addressing
Problem 8
Show how to implement a decoder that recognizes the following 4 ranges of a 16-bit address A, and generates the corresponding enable signals e_0, e_1, e_2, e_3:

For A in:
- $C000-\text{CFFF}$: e_0
- $D000-\text{DFFF}$: e_1
- $E000-\text{EFFF}$: e_2
- $F000-\text{FFFF}$: e_3

Demultiplexers

- Demultiplexer
 - 1 binary input
 - n binary outputs
 - $\log_2 n$ binary selection inputs
 - Function: places input onto one of n outputs, with the remaining outputs asserted low
 - Called 1-to-n demultiplexer
- Closely related to decoder
 - Can build 1-to-n demultiplexer from $\log_2 n$-to-n decoder by using the decoder's enable signal as the demultiplexer's input signal, and using decoder's input signals as the demultiplexer's selection input signals.

Encoders

- Encoder
 - 2^n binary inputs
 - n binary outputs
 - Function: encodes information into an n-bit code
 - Called 2-to-n encoder
 - Can consider 2^n binary inputs as a single 2^n-bit input
 - Can consider n binary output as a single n-bit output
 - Encoders only work when exactly one binary input is equal to 1
Priority Encoders

- Priority Encoder
 - \(2^n\) binary inputs
 - \(n\) binary outputs
 - 1 binary "valid" output
 - Function: encodes information into an \(n\)-bit code based on priority of inputs
 - Called \(2^n\)-to-\(n\) priority encoder
 - Priority encoder allows for multiple inputs to have a value of '1', as it encodes the input with the highest priority (MSB = highest priority, LSB = lowest priority)
 - "Valid" output indicates when priority encoder output is valid
 - Priority encoder is more common than an encoder

4-to-2 MSB Priority Encoder

<table>
<thead>
<tr>
<th>(W_0)</th>
<th>(W_1)</th>
<th>(W_2)</th>
<th>(W_3)</th>
<th>(y_0)</th>
<th>(y_1)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

4x4-bit Unsigned Multiplier

\[
\begin{array}{c}
\text{a} \\
\times \\
\text{b}
\end{array}
\Rightarrow
\begin{array}{c}
\text{c} \\
\Rightarrow \\
\text{u}
\end{array}
\]

4x4-bit Signed Multiplier

\[
\begin{array}{c}
\text{a} \\
\times \\
\text{b}
\end{array}
\Rightarrow
\begin{array}{c}
\text{c} \\
\Rightarrow \\
\text{s}
\end{array}
\]

Unsigned vs. Signed Multiplication

<table>
<thead>
<tr>
<th></th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1111 \times 1111)</td>
<td>15 \times 15</td>
<td>(-1) \times (-1)</td>
</tr>
<tr>
<td>(11100001)</td>
<td>225</td>
<td>(00000001)</td>
</tr>
</tbody>
</table>

Logical Shift Right

\[
\begin{array}{c}
\text{A(3)} \\
\leftarrow \\
\text{A(2)} \\
\leftarrow \\
\text{A(1)} \\
\leftarrow \\
\text{A(0)} \\
\end{array}
\Rightarrow
\begin{array}{c}
\text{C} \\
\leftarrow \\
\text{L} \\
\leftarrow \\
\text{A} \\
\leftarrow \\
\end{array}
\]
Arithmetic Shift Right

\[
\begin{array}{c}
 \text{A} \ll \text{B} \\
 \text{C} \\
\end{array}
\]

Fixed Rotation

\[
\begin{array}{c}
 \text{A} \\
 \text{C} \\
\end{array}
\]

8-bit Variable Rotator Left

\[
\begin{array}{c}
 \text{B} \\
 \text{A} \ll \text{B} \\
 \text{C} \\
\end{array}
\]

Read Only Memory (ROM)

\[
\begin{array}{c}
 \text{ADDR} \\
 \text{DOUT} \\
\end{array}
\]

Implementing Arbitrary Combinational Logic Using ROM

\[
\begin{array}{c}
 \text{ADDR} \\
 \text{DOUT} \\
\end{array}
\]

Tri-state Buffer

(a) A tri-state buffer

\[
\begin{array}{c}
 x \\
 \text{f} \\
\end{array}
\]

(b) Equivalent circuit

\[
\begin{array}{c}
 x \\
 \text{f} \\
\end{array}
\]

(c) Truth table

\[
\begin{array}{c|c|c|c|c|c|c|c}
 x & f \\
 0 & 0 & Z & Z \\
 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}
\]
Four types of Tri-state Buffers

(a)

(b)

(c)

(d)