Problem 1 (10 points)

Perform the given below tasks for the unsigned Radix-4 shift/add sequential multiplier with right shift, two carry-save adders, and the upper half of the cumulative partial product kept in the carry-save form, capable of computing \(p = a \cdot x + y \), where \(a, x, \) and \(y \) are all \(k \)-bit unsigned numbers.

A part of this multiplier is shown conceptually below:

1. Draw a detailed block diagram, based on D flip-flops, multiplexers (with each data input of the size of 1 bit), Full Adders, Half-Adders, and logic gates, for \(k=4 \).
2. Draw a generalized block diagram, based on registers (of arbitrary size), multiplexers (with arbitrary size of data inputs), adders (with arbitrary size of operands), bit-by-word logic operators (e.g., \(b \) AND \(a \), where \(b \) is a bit, and \(a \) is a \(k \)-bit word), and logic gates, for arbitrary value of \(k \).
3. Mark the critical path on both block diagrams.
4. Derive the formulas for the following performance metrics of the \(k \times k \) bit multiplier (assuming \(k \) is even):
 a. Minimum clock period, as a function of the delays and timing parameters of basic logic components (e.g., \(d_{\text{FF}}, d_{\text{AND2}}, t_{\text{setup}} \)), and the parameter \(k \)
 b. Minimum latency
 c. Maximum throughput (in multiplications per second).
5. In a simple table, provide values of the control signals used by your circuit during all clock cycles necessary for initializing the circuit and computing \(p = a \cdot x + y \), for \(k=4 \).

Assume that:

a. in your diagram you can use connections by name, i.e., two nodes with the same name are connected without drawing a line between them

b. you do not need to design the corresponding control unit, but you should give name to all control signals required by your design

c. all outputs from the controller are registered

d. you should assign names and denote widths for all signals and buses in your design.

Problem 2 (6 points)

Show all operands, intermediate values, and the final results (in binary notation) generated during the execution of the following multiplication in the circuit from Problem 1 (all operands given in the decimal notation):

\[
\begin{align*}
 k &= 4 \\
 a &= 10 \\
 x &= 14 \\
 y &= 13.
\end{align*}
\]

Problem 3 (6 points)

Show all operands, intermediate values, and the final results (in decimal and binary notation) generated during the execution of the following division by the non-restoring signed integer divider, described by the given below pseudocode.

\[
\begin{align*}
 k &= 4 \\
 z &= -45 \\
 d &= 7.
\end{align*}
\]
Design a 4x4 unsigned tree squarer mod 13, i.e., the combinational circuit that performs operation $s = a^2 \mod 13$ for a 4-bit input a.

As intermediate steps in your design, please provide:
- a) table of partial products,
- b) dot diagram, and
- c) detailed block diagram.

Assume that you can use the following components in your block diagram: Full Adders, Half-Adders, Modified Half-Adders, 2-to-1 multiplexers, and basic logic gates (NOT, AND, OR, and XOR).

Your optimization target should be the minimum product of latency times area.
Bonus Problem 5 (5 bonus points)

Write a truth table for the Radix-8 Booth Recoding Logic, with inputs (x_{i+2}, x_{i+1}, x_i, and x_{i-1}), and outputs (neg, two, four, non0).

Implement this circuit using NOT, AND, OR, and XOR gates with up to 4 inputs.

Show how the outputs from this circuit can be used to generate multiples:
-4a, -2a, -a, 0, a, 2a, 4a.