ECE 645
Spring 2014
Homework 3 Bonus

due Saturday, March 1, 11:59 PM

Instructions:

Solve one of the following two bonus problems:
Analytical Problem or Implementation Problem.

If you solve one of these problems, you may still obtain up to 50% of points for solving the other problem.

The Implementation Problem requires knowledge of:
- VHDL or Verilog, and
- Xilinx FPGA tools.

Common Background:

The operation of a high-radix parallel prefix network adder is shown in Figs. 1-4.

Fig. 1 Block diagram of a high-radix parallel prefix network adder.
Fig. 2 Block diagram of the Generate-Propagate-Sum (GPS) unit for \(w=4 \), implemented using internal resources of Xilinx FPGAs.

Fig. 3 Block diagram of the sum unit (S) for \(w=4 \), implemented using internal resources of Xilinx FPGAs.
Fig. 4 Parallel Prefix Networks for N=8, a) Kogge-Stone, b) Brent-Kung.
Analytical Problem

Assumptions:
Assume the following values of individual delays for an FPGA used:

\[d_{\text{LUT}} = 0.75 \text{ ns} \]
\[d_{\text{XOR}} = 0.20 \text{ ns} \quad \text{(applies only to the hardwired XORs shown in Figs. 2 and 3)} \]
\[d_{\text{MUX2}} = 0.075 \text{ ns} \quad \text{(applies only to hardwired multiplexers, shown in Figs. 2 and 3)} \]
\[d_{\text{FF}} = 0.20 \text{ ns} \]
\[t_{\text{setup}} = 0.20 \text{ ns} \]

In order to exit the carry and control logic, \(c_{\text{out}} \) of each Ripple-Carry Adder, must pass as \(c_{\text{in}} \) through the hardwired XOR2 of the next adder stage.

Delays of all interconnects are assumed to be equal to zero.

Task 1
Derive the formulas for the latency of the High-Radix Parallel Prefix Network Adder for

A. Kogge-Stone Parallel Prefix Network
B. Brent-Kung Parallel Prefix Network

as a function of the operand size \(n=2^k \) and the word size \(w \). Note that \(N=n/w \).

Assume that the adder is surrounded by registers, and include the delay and the setup time of a register in your formulas for the latency of this adder.

Task 2
Draw a graph in MS Excel showing the latency of this adder as a function of \(w \) for the following values of \(n \) and the range of values for \(w \).

- \(n=512, 1024, 2048 \)
- \(w=8, 16, 32, \) and 64.

Task 3
Find analytically an optimal value of the word size, \(w \), for which a 1024-bit High-Radix Parallel Prefix Network Adder has the smallest latency. Compare the results for the case of Kogge-Stone vs. Brent-Kung Parallel Prefix Network.
Implementation Problem

Task 1

Describe the High-Radix Parallel Prefix Network Adder (without carry in) in VHDL or Verilog.

Use generics (in VHDL) or parameters (in Verilog) for the operand size \(n = 2^k \), and the word size \(w \). Use "+" for the description of ripple-carry adders.

You code should allow the choice between two possible types of Parallel Prefix Network: Kogge-Stone and Brent-Kung.

Task 2

Surround your adder with a w-to-n SIPO (Serial-Input-Parallel-Output converter) for the inputs \(A \) and \(B \), and an n-to-w PISO (Parallel-Input-Serial-Output converter) for the output \(R \).

Store \(c_{out} \) in a D flip-flop.

Task 3

Synthesize and implement your circuit for \(n = 1024 \), \(w = 16, 32, \) and \(64 \), and two Parallel Prefix Network types, targeting Virtex 6 FPGAs.

Draw diagrams showing the dependence of the latency on the value of \(w \), separately for each of the Parallel Prefix Network types.

Hint: Assume that the circuit latency is equal to the minimum clock period returned by the tools.