Basic Concepts of Cryptology

CRYPTOLOGY

CRYPTOGRAPHY CRYPTANALYSIS

from Greek

- cryptos - hidden, secret
- logos - word
- graphos - writing

Basic Vocabulary

encryption (encipherment) \[\rightarrow\] ciphertext (cryptogram, encrypted message) \[\rightarrow\] decryption (decipherment)

message (plaintext, clear message) \[\rightarrow\] M \[\rightarrow\] C \[\rightarrow\] M

Sender \[\rightarrow\] Receiver
Cryptosystem (Cipher)

Definition of a cryptosystem (cipher)

Substitution Cipher

Key = [a b c d e f g h i j k l m n o p q r s t u v w x y z]

\[\begin{aligned}
&\text{enciphering} \\
&\begin{array}{cccccccc}
\text{T} & \text{O} & \text{B} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} \\
\text{B} & \text{D} & \text{Q} & \text{H} & \text{D} & \text{X} & \text{M} & \text{D} & \text{B} & \text{Q} & \text{H} \\
\text{O} & \text{R} & \text{N} & \text{T} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} \end{array}
\end{aligned} \]

\[\begin{aligned}
&\text{deciphering} \\
&\begin{array}{cccccccc}
\text{T} & \text{O} & \text{B} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} \\
\text{D} & \text{B} & \text{Q} & \text{H} & \text{D} & \text{X} & \text{M} & \text{D} & \text{B} & \text{Q} & \text{H} \\
\text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} & \text{O} & \text{R} & \text{N} & \text{T} & \text{E} \end{array}
\end{aligned} \]

Number of keys = 26! \approx 4 \times 10^{26}
Kerckhoff’s principle

The security of a cipher MUST NOT depend on anything that cannot be easily changed

Auguste Kerckhoff, 1883

Unpublished vs. published algorithm?

<table>
<thead>
<tr>
<th>Unpublished algorithm</th>
<th>Published algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cryptanalysis must include recovering the algorithm</td>
<td>1. The only reliable way of assessing cipher security</td>
</tr>
<tr>
<td>2. Smaller number of users, smaller motivation to break</td>
<td>2. Prevents backdoors hidden by designers</td>
</tr>
<tr>
<td>3. Unavailable for other countries</td>
<td>3. Large number of implementations ~ low cost + high performance</td>
</tr>
<tr>
<td></td>
<td>4. No need for anti-reverse-engineering protection</td>
</tr>
<tr>
<td></td>
<td>5. Software implementations</td>
</tr>
<tr>
<td></td>
<td>6. Domestic and international standardization</td>
</tr>
</tbody>
</table>

Fundamental Tenet of Cryptography

If lots of smart people have failed to solve a problem, then it probably will not be solved anytime soon.
Security of unpublished ciphers

Commercial packages cracking unpublished encryption schemes built-in:

- MS Word, MS Excel, MS Money
- Word-Perfect, ProWrite, Data Perfect
- Lotus 1-2-3, Symphony, Quattro-Pro
- Paradox, Semantec’s Q&A
- PKZip, etc.

Time: 1-2 minutes for old versions of programs up to several days for new versions of some programs

Price: ~ $99 per module (in the past), $595 per toolkit (49 modules)

Companies: Access Data
Crak Software

Passwords recovered even for empty files!

Breaking ciphers used in GSM, 1999 (1)

GSM - world’s most widely used mobile telephone system

- 51% market share of all cellular phones, both analog and digital
- over 215 million subscribers in America, Europe, Asia, Africa, and Australia
- In the US, GSM employed in the "Digital PCS" networks of Pacific Bell, Bell South, Omnipoint, etc.

Two voice encryption algorithms:
A5/1 and A5/2
encrypt voice between the cell phone and the base station

Breaking ciphers used in GSM (2)

Both voice encryption algorithms

- never published
- designed and analyzed by the secretive "SAGE" group (part of ETSI – European Telecommunications Standard Institute)
- A5/1 believed to be based on the modified French naval cipher

Both algorithms reverse-engineered by "Marc Briceno" with the Smartcard Developer Association
published by the Berkeley group

A5/1 in May 1999,
A5/2 in August 1999
Breaking ciphers used in GSM (3)

Published attacks

A5/2
August 1999, Ian Goldberg and David Wagner, U.C. Berkeley
Number of operations in the attack \(\sim 2^{40} \)

A5/1
May 1999, Jovan Golic
Number of operations in the attack \(\sim 2^{10} \)

December 1999, Alex Biryukov and Adi Shamir
Less than 1 second on a single PC with 128 MB RAM and two 73 GB hard disks.
Based on the analysis of the A5/1 output during the first two minutes of the conversation.

Attack on Mifare Classics
Dec 2007-Apr 2008

Secret algorithm Crypto-1 developed by Philips used, among the others, in the public transport system cards in London (Oyster card), Boston (CharlieCard), Perth (SmartRider), Seoul (T-money), Busan (Mybi), and in Netherlands (OV-Chipkaart) easily broken after successful reverse engineering of the chip.
A total of about 1000 million cards all over the world.

Features required from today’s ciphers

<table>
<thead>
<tr>
<th>STRENGTH</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTIONALITY</td>
<td></td>
</tr>
<tr>
<td>• easy key distribution</td>
<td></td>
</tr>
<tr>
<td>• digital signatures</td>
<td></td>
</tr>
</tbody>
</table>
Software or hardware?

<table>
<thead>
<tr>
<th>SOFTWARE</th>
<th>HARDWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>security of data during transmission</td>
<td>speed</td>
</tr>
<tr>
<td>low cost</td>
<td>random key generation</td>
</tr>
<tr>
<td>flexibility</td>
<td>access control to keys</td>
</tr>
<tr>
<td>(new cryptographic algorithms, protection against new attacks)</td>
<td>tamper resistance (viruses, internal attacks)</td>
</tr>
</tbody>
</table>

Basic hardware implementations of cryptography

- VLSI chip (ASIC, FPGA)
- smart card
- PCMCIA card
- cryptographic card
- stand-alone cryptographic device

Why are cryptographic chips needed?

- hardware accelerators for web servers

SSL (Secure Socket Layer) – cryptographic protocol used by majority of today’s web servers to protect credit card numbers for online transactions such as buying a book on the amazon.com
Why are cryptographic chips needed?

- **hardware accelerators for Virtual Private Networks (VPNs)**

 IPSec (Secure Internet Protocol) – cryptographic protocol used to supportVPNs (Virtual Private Networks), i.e., secure communication between remote Local Area Networks (LANs) using Internet

 IPSec optional in IP ver. 4, required in emerging IP ver. 6

 Acceleration can be provided using:
 - secure gateways
 - secure client PCMCIA cards.

Virtual Private Network

- local networks may belong to the same or different organizations
- security gateways may come from different vendors

Why are cryptographic chips needed?

- **hardware accelerators for wireless gateways**

 IEEE 802.11 – most popular wireless protocol including strong encryption and authentication
Why are cryptographic chips needed?

- secure storage
- secure XML supply chain communication
- secure phones
- secure PDAs
- secure satellite communications
- cipher breaking

Evolution of cryptography and cryptanalysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cryptography</td>
<td>DES</td>
<td>RSA</td>
<td>ECC</td>
<td>Pairing-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mathematics</td>
<td>algebra</td>
<td>statistics</td>
<td>number theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>engineering</td>
<td>rotor machines</td>
<td>enciphering devices</td>
<td>integrated circuits</td>
<td>software</td>
<td>operating systems</td>
<td>specialized instructions</td>
</tr>
<tr>
<td>physics</td>
<td>quantum cryptography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cryptanalysis</td>
<td>number theory</td>
<td>algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mathematics</td>
<td>statistics</td>
<td>permutation theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>engineering</td>
<td>cryptography</td>
<td>mainframes</td>
<td>supercomputers</td>
<td>computer networks</td>
<td>specialized hardware</td>
<td></td>
</tr>
<tr>
<td>physics</td>
<td>quantum computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progress in Implementations of Cryptography
First Rotor Machines

Enigma
Cryptographic chips and boards

Progress in Implementations of Cryptoanalysis

British Cryptologic Bomb Used to Break Enigma
Colossus: First Mainframe

Supercomputer Cray

COPACOBANA
Ruhr University, Bochum,
University of Kiel, Germany, 2006

Cost: € 8980

120 Spartan 3 FPGAs
Clock frequency 100 MHz
CAIRN 3 – Specialized Machine to Break RSA

Tetsuya Izu and Jun Kogure
and Takeshi Shimoyama (Fujitsu)

CHES 2007 – September 2007