Survey of Codebreaking Machines

Swathi Guruduth
Vivekanand Kamanuri
Harshad Patil
Contents

• Introduction
• Motivation
• Goal
• Machines considered
• Comparison based on technology used
• Brief description of machines
• FPGA machines
• ASICs and GPU
• Results
• Conclusions
Introduction

• Cryptography has been around for thousands of years

• Cryptanalysis is the study of breaking codes and ciphers

• Study of state of the art machines used for cryptanalysis
Motivation

- Useful for improvements for cryptosystem design
- Helpful to improve cryptosystem security
Goal

• Study of several parameters in cryptosystems and their comparison

• The project aims to give an overview of the possible hardware attacks on cryptosystems
Machines considered

- bcrypt password search (BPS) using special purpose hardware: 2014
- Cryptanalysis of full AES using GPU like hardware (CAESAR): 2012
- Cryptohaze GPU Rainbow (CGR) cracker: 2012
- Cryptanalysis of KeeLoq with COPACOBANA (CKC): 2010
- COPACOBANA: 2008
- NSA@home: 2007
- A fundamental evaluation of 80 bit keys employed by hardware oriented stream ciphers (EEK): 2006
- Implementing the elliptic curve method of factoring in reconfigurable hardware (ECMF): 2006
Comparison based on technology used

FPGA
• BPS using special purpose hardware: 2014
• Cryptanalysis of KeeLoq with COPACOBANA: 2010
• COPACOBANA: 2008
• NSA@home: 2007
• A fundamental evaluation of 80 bit keys employed by hardware oriented stream ciphers: 2006
• Implementing the ECM of factoring in reconfigurable hardware: 2006

ASICs
• CAESAR: 2012

GPUs
• Cryptohaze GPU Rainbow cracker: 2012
Brief description of machines

• BPS using special purpose hardware (2014)
 - This is a flexible high-speed implementation of a bcrypt password search system on a low-power Xilinx Zynq 7020 FPGA.
 - The design consists of 40 parallel bcrypt cores running at 100 Mhz.
 - This implementation outperforms all currently available implementations and improves password attacks on the same platform by at least 42%.

• CAESAR (2012)
 - Cryptanalysis of the full AES using GPU like hardware. It is a hypothetical supercomputer
 - The paper investigates the feasibility of large-scale hardware attacks on AES-128 and AES-256 bounded by a time complexity of \(2^{100}\), but memory complexity of less than \(2^{70}\) (and as little data as possible)
Contd..

- Cryptohaze GPU Rainbow cracker (2012)
 - The Cryptohaze tools are a set of GPU accelerated password cracking tools
 - Cryptohaze rainbow tables are a fully GPU accelerated implementation of the rainbow tables concept
 - The tools are cross platform and work with nVidia GPUs with CUDA, ATI GPUs with OpenCL, and both Intel & AMD CPUs with OpenCL

- Cryptanalysis of KeeLoq with COPACOBANA (2010)
 - In this paper a hardware architecture for the cryptanalysis of KeeLoq was developed
 - The brute-force attack, implemented on the cost-optimized parallel codebreaker COPACOBANA, is able to reveal the secret key of a remote control in less than 0.5 seconds if a 32-bit seed is used and in less than 6 hours in case of a 48-bit seed
COPACOBANA (2008)
- Cost-optimized parallel code breaker is an FPGA-based machine which is optimized for running cryptanalytic algorithms.
- It is suitable for parallel computation problems which have low communication requirements.

NSA@home (2007)
- NSA@home is a fast FPGA-based SHA-1 and MD5 brute-force cracker.
- Capable of searching the full 8-character keyspace (from a 64-character set) in about a day in the current configuration for 800 hashes concurrently, using about 240W of power.
Contd..

- A fundamental evaluation of 80 bit keys employed by hardware oriented stream ciphers (2006)
 - In this paper the security afforded by the 80 bit keys of hardware focused stream cipher is analyzed from the perspective of brute force attack susceptibility

- Implementing the ECM of factoring in reconfigurable hardware (2006)
 - A novel hardware architecture for the ECM of factoring has been proposed
 - The ECM architecture has been ported across five different families of FPGA devices in order to select the family with the best performance to cost ratio
 - A timing comparison with the highly optimized software implementation, GMP-ECM, has been performed
FPGA Machines

<table>
<thead>
<tr>
<th>Machine</th>
<th>Technology</th>
<th>type of codes it can crack</th>
<th>Time</th>
<th>costs</th>
<th>power</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKC</td>
<td>Cluster COPACOBANA (Xilinx Spartan 3 FPGAs)</td>
<td>Block Ciphers</td>
<td>Less than 0.5sec for a 32-bit seed and less than 6hrs in case of a 48-bit seed</td>
<td>Less than $10,000</td>
<td>600W</td>
</tr>
<tr>
<td>ECMF</td>
<td>Xilinx Spartan 3 FPGA</td>
<td>RSA Factorization</td>
<td>33.5msec using a Spartan 3 XC3S5000-5</td>
<td>$130</td>
<td></td>
</tr>
<tr>
<td>COPACOBANA</td>
<td>Xilinx Spartan 3 with microblaze</td>
<td>Any symmetric cipher with up to roughly 64 key bits</td>
<td>6.4 days</td>
<td>Less than $10,000</td>
<td>600W</td>
</tr>
<tr>
<td>Machine</td>
<td>Technology</td>
<td>type of codes it can crack</td>
<td>Time</td>
<td>costs</td>
<td>power</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>bcrypt</td>
<td>Zedboard, Xilinx Zynq 7020 FPGA</td>
<td>bcrypt passwords</td>
<td>6,511 hashes per sec</td>
<td>$319</td>
<td>4.2W</td>
</tr>
<tr>
<td></td>
<td>Virtex 7</td>
<td></td>
<td>51,437 hashes per sec</td>
<td>$3,495</td>
<td>20W</td>
</tr>
<tr>
<td>NSA@home</td>
<td>FPGA Virtex II pro</td>
<td>hash function</td>
<td>8 character keyspace in about a day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEK</td>
<td>Altera’s Cyclone II and HardCopy II</td>
<td>Stream Ciphers</td>
<td>80 bit keys in 1hr using EP2C35 FPGA and in 1min using HC210 FPGA</td>
<td>Cyclone II - $68 billion and for HardCopy II - $240 billion by 2015</td>
<td>Cyclone II approx. 180 mW and 360 mW for on-chip system and off-chip respectively</td>
</tr>
</tbody>
</table>
ASICs and GPU

<table>
<thead>
<tr>
<th>Machine</th>
<th>Technology</th>
<th>Type of codes it can crack</th>
<th>Time</th>
<th>Costs</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAESAR</td>
<td>ASIC</td>
<td>AES operations</td>
<td>9×10^{29} AES operations can be done in 3×10^7 secs</td>
<td>Expected to be 1 trillion</td>
<td>4 TW</td>
</tr>
<tr>
<td>CGR</td>
<td>GPUs and Open CL</td>
<td>Passwords</td>
<td>A hash function can be cracked in under 2 mins</td>
<td>Cost of a personal computer (Less than $1000)</td>
<td>60W to 250W</td>
</tr>
</tbody>
</table>
Results: Power

Machine v/s power in W for FPGA machines

Machine v/s power in TW for ASIC

Machine v/s power in W for GPU (avg.)
Results: Costs

Machine v/s cost for FPGA machines

Machine v/s costs for ASIC

Machine v/s costs GPU
Conclusions

- Altera’s cyclone II and HardCopy II are the machine which uses minimum power to break stream ciphers.
- CAESAR consumes most power: 4TW
Conclusions

- Implementing the Elliptic Curve Method of Factoring on a Spartan 3 FPGA is the most cost effective at $130
- Least cost effective is CEASAR costing close to 1 trillion USD