Welcome to Computer Organization. This course is an intensive introduction to the fundamentals of computer architecture. Relying heavily on the elementary principals taught in ECE 331 and ECE 332, we will discuss the basic design, or architecture, of computing hardware. Taking a largely bottom-up approach, we will focus on the microarchitecture level (the computing hardware itself) and the instruction set architecture level (the interface between software and the computing hardware). This course has a demanding design component; you will implement the concepts presented in lecture using real hardware design tools.

Topics: include instruction set architecture, addressing modes, RISC and CISC, computer arithmetic, evaluating performance, datapath and control, single cycle and multi cycle datapaths, exceptions and hazards, pipelining, cache and memory hierarchy, assembly language, processor simulation.

Faculty: Jens-Peter Kaps
ENGR 3222
jkaps@gmu.edu

Teaching Assistant: Bilal Habib
bhabib@gmu.edu

Lectures: 10:30 – 11:45 am, Monday and Wednesday
Planetary Hall 122

Office Hours:
Please check the class web page for the current office hour schedule. You should feel free to approach Dr. Kaps and the TA at any time if you need help in addition to the scheduled sessions. The best way to contact us is via e-mail.

Required Background:
- ECE 331 Digital System Design (grade C or better)
- ECE 332 Digital Electronics and Logic Design Lab

and either
- CS 262 Introduction to Low-Level Programming
- CS 222 Computer Programming for Engineers

Homework:
Homework will be assigned on a weekly basis (up to 12 assignments total). Homework is due on Monday and is to be handed in on paper at the beginning of class. Homework is very helpful in preparation for exams and is required to achieve an ‘A’ in this class. **Late submission will result in 20% deduction per day. Homework cannot be submitted later than Wednesday at the end of class** because then the solutions will be posted. Only if you can't make it to class, please e-mail the homework solution before the due date and time to the instructor. Only one randomly picked question of each homework will be graded in detail. All other questions will just be checked for completion and correctness. The solutions will cover all questions.

Exams:
There will be two exams during the course. Exams will be **closed book.** A single (two-sided) blank note card (3” x 5”) will be provided by the instructor on which you can write down your own notes. You are not allowed to use more than one card or to attach anything to this card. Your notes have to be hand written. There will be NO make-up exams. (See Dr. Kaps for an exception.) Students who are more than 15 minutes late for an exam may not be admitted and will be assigned a grade of zero for the exam.

- **Midterm Exam:** Wednesday March 5th.
- **Final Exam:** Monday May 7th, 10:30 am – 1:15 pm.
Projects:
This course features six projects which are based upon each other. Students in ECE 445 will be granted access to the ENGR Room 3208 computer lab to complete their projects. All projects must be tested using Xilinx ISE. Students are encouraged to discuss with TA options for working remotely. Late submissions will be subjected to a 10% grade reduction per day including weekends. No credit will be given to any submissions that are more than 3 days past the due date. The projects are as follows (percentage of final grade):

Project 1: MIPS Arithmetic and Logic Unit (4%)
Project 2: MIPS Datapath and Control Unit to implement R-type instructions (10%)
Project 3: Running MIPS on BASYS2 (3%)
Project 4: MIPS Datapath and Control Unit to implement I-type instructions (5%)
Project 5: Datapath and Control Unit to implement jump instructions (6%)
Project 6: Attach simple Input/Output devices to MIPS (7%)

Grading:
The final grade is based on a weighted sum of your performance in exams, homeworks, recitations and class participation:

<table>
<thead>
<tr>
<th>Project</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>35%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Homworks</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Honor Code:
All rules of the GMU Honor Code system will be in effect. You must review the rules and be familiar with them.

You are encouraged to discuss homework problems and projects with other students and/or obtain the assistance of the TA. Nevertheless, you must write down your own homework solutions which represent your understanding of the material. Projects must be completed individually. No part of a project submission can be copied from another student of the class or any other source.

Duplicating someone else’s work such as but not limited to homework solutions, hardware/software designs, diagrams, source code, project reports, and exam notes, is considered cheating. If you use material from other sources such as but not limited to the web, books, journals, data sheets, etc. you must reference the source. Honor code violations will be followed up with full force.

Classroom Etiquette:
Cellphones, pagers have to be put into silent mode. If you have an emergency need to answer a call please quietly leave the room BEFORE answering the call. Lectures may not be recorded without express written permission from the instructor.

E-Mail:
When e-mailing the instructor or the TA you must use your Mason e-mail account and start the subject line with ECE445. Otherwise we might not be able to find your e-mail in our inbox.

Students with Disabilities
If you need special assistance, please inform the instructor and the Office of Disability Services (ODS, http://ods.gmu.edu) as soon as possible. All special accommodations must be arranged through ODS.

The Course Syllabus is Subject to Change