Instructor: A. Cyrus Sabzevari

Email: asabzeva@gmu.edu

Office Hours: Monday 6:15 – 7:10 in the adjunct office (Engineering Building, room 3707 or 3708) or by appointment

Course Description:

This is a graduate level course in Distributed, Embedded and Real-Time Systems designed for real-time multiprocessing and distributed processing.

It discusses the theoretical and practical concepts in real-time systems with an emphasis on both hard real-time and soft real-time distributed multi-processing. Several operating systems (e.g. Linux, VxWorks) computer architectures and scheduling methods will be used to illustrate the concepts. The course provides students with hands-on experience in distributed real-time systems through projects which involve real-time software design, implantation and test.

Prerequisites:

- Knowledge of basic computer system organization and operating system concepts and multiprocessor computer architecture (ECE 511 Advanced Microprocessor Architecture).

- This class requires systems level design and analysis as well as computer programming. It also requires understanding and knowledge of basic multi-processor computer architecture. You may program in C, C++ or Java during the course (project and assignments). Matlab may also be used for projects.

Required Text:

Other Optional Texts:

Other recommended books and papers:

TTP:

Real-Time and Distributed Protocols and Design:

Distributed Systems and Operating Systems:

Linux and POSIX:

Class Meeting Topics:

Overview:

Reading: lecture notes, Liu: chapters 1 and 2

Hard and Soft Real-Time Embedded Systems
Jobs and Processes
Release Times, Deadlines, Timing Constraints
Synchronization Mechanisms
Concept of Process
Concept of Thread
Mutual exclusion
Semaphores
Process Synchronization

Real-time Hardware

Reading: lecture notes, Laplante: chapters 1 and 2
Processor Architecture
Memory Technologies
Pipelined Instruction Processing
Multi-Core Processors
CISC vs. RISC
I/O
DMA
Analog and Digital I/O
Distributed Real-Time Architectures
Control Area Network
Time Triggered Architecture

System-Level Design and Model of Real-Time Systems:

Reading: lecture notes, Liu: chapter 3

System Level Design
Incremental Design Process
Application Modeling
Processes and Resources
Periodic Task Model
Process Dependencies and Data Flow
Scheduling

Distributed Hard Real-Time Systems with Time-Triggered Protocol and Controller Area Network Protocol:

Reading: Liu sections 4.1, 5.1, 5.2, lecture notes

Time-Triggered (Clock-Driven) vs. Event-Triggered (Priority-Driven)
Time-Driven Systems
Time Triggered Protocol (TTP)
Event-Driven Systems
Controller Area Network (CAN) Protocol
Sporadic Tasks Scheduling
Incremental Mapping and Scheduling and Strategies

Approaches to Real-Time Scheduling, Time Driven Scheduling and Incremental Mapping, Event Driven Scheduling and Incremental mapping:

Reading: lecture notes and Liu: chapter 4, Laplante: section 3.1, 3.2
Other recommended reading: Pop, Kopetz

Polled Loop and Delay
Cyclic Code Structure, Finite State Machines and Co-routines
Interrupts
Time Driven Scheduling
Event Driven Scheduling
Static Scheduling
Dynamic Schedules
Reconfiguration
Optimality of EDF and LST Scheduling Algorithms
Validating Priority Driven Systems

Schedulability Analysis and Bus Access for Event-Driven Systems:

Reading: lecture notes and Liu: chapter 5, 6.1-6.4
Other recommended reading: Pop, Kopetz

Fixed Priority
Dynamic Priority
Response Time Analysis
Schedulability Analysis for Distributed Systems
Bus Access Optimization
Mapping and Scheduling and Strategies
Sporadic Tasks Scheduling
Experimental Evaluation

Introduction to POSIX Real-Time extension and Network Programming

Reading: lecture notes
Other recommended reading: Gallmeister, Butenhof, Stevens.

Threads
Synchronization
Communication
Scheduling
Sockets

Midterm exam – in class, closed books, closed notes, individual effort

Resource and Resource Access Control:

Reading: lecture notes and Liu: 8.1-8.5, Laplante: 3.3

Contention and Resource Access Control
Non-preemptive Critical Sections
Priority Inheritance Protocol
Priority Ceiling Protocol
Memory Management Issues

Operating Systems:

Reading: lecture notes and Laplante: 3.1, 3.5
Other recommended reading: Bovet

Scheduling
System Services
Scheduling in Linux kernels
Scheduling in VxWorks 5.5
Soft vs. Hard Real-Time
Process Management
System Management
Clustering

Real-Time Programming:

Reading: Lecture notes and Laplante: chapter 4

Coding for Real-Time Software
Coding Standard for Real-Time Software
Procedural Languages
Modularity and Typing Issues
Parameter Passing and Dynamic Memory Allocation
Exception Handling
Programming Languages
Object Orient Programming
Design Patterns
Synchronizing Objects and Garbage Collection
Compiler Optimizations of Code

Deadlock and Starvation, Distributed Mutual Exclusion, Theoretical Foundations of Distributed Systems:

Reading: Lecture notes
Other recommended reading: Singhal, Bacon, Chow

Causes and handling of deadlock
Deadlock models
Resource models
Virtual Memory
Distributed Mutual Exclusion protocols
Limitations of a distributed system
Lamport’s logical clocks
Vector clocks
Causal ordering
Global state
Termination detection
Network Time Protocol
GPS

Final Exam – in class, closed books, closed notes, individual effort

Grading:

There will be an in-class midterm and final. All exams are individual effort, closed book, closed notes, and no internet.
<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>20-25%</td>
</tr>
<tr>
<td>Assignments</td>
<td>15-20%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>30%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
</tbody>
</table>