Welcome to Single-Chip Microcomputers. This course expands your knowledge of microprocessors from ECE 445 and puts them into a system context. You will be introduced to the principle of a microcontroller, which comprises all elements of a basic computer system on a single chip, i.e. microprocessor, memory and I/O devices. Based upon this single-chip microcomputer, you will learn how to interface it with other devices, such as sensors, keypads, and displays. This course also covers real-time control issues, assembly language programming for control, design of control software, input/output methods, design tools, and available single-chip microcomputers. In the associated lab you will be designing and constructing systems including a single-chip microcomputer and ancillary hardware to implement a complete control system.

Topics: Include introduction to the MSP 430, software development using C and assembly, polling, interrupts, timers, real time clock (RTC), ADC, DCA, serial peripheral interface (SPI), I2C, RS232, USB.

Faculty:
Classes and Coordination

Jens-Peter Kaps

jkaps@gmu.edu

Lab Instructors:

Wednesday Labs

TBA

ENGR 3208

Thursday Labs

TBA

ENGR 3208

Lectures:

12:00 – 1:15 pm, Monday and Wednesday

Blue Ridge 129

Labs:

4:30 – 7:10 pm, Wednesday, Thursday

ENGR 3208

Class Web Page:

http://ece.gmu.edu/~jkaps/courses/ece447 and on MyMason

Textbooks:

Hardware:

Each student is expected to purchase a lab kit

Software:

Code Composer Studio v6

http://www.ti.com/tool/ccstudio

IAR Kickstart Environment

http://www.ti.com/tool/iar-kickstart

Office Hours:

Jens-Peter Kaps

Tuesday 4:30 – 5:30 pm

ENGR 3222

Wednesday 2:30 – 3:30 pm

TA

TBA

ENGR 3208

Please check the class web page for updates to this office hour schedule.
The best way to contact us outside class and office hours is via e-mail. Please start the subject line of your e-mail with “ECE447:”. You must use your Mason e-mail account. For questions that might interest several students, please use the discussion group on MyMason.

Required Background:
- ECE 445 Computer Organization (grade C or better)
- ECE 332 Digital Electronics and Logic Design Lab (grade C or better)
and either
- CS 367 Computer Systems and Programming (grade C or better)
or
- CS 222 Computer Programming for Engineers (grade C or better)

Course Schedule
The course schedule is provided in a separate document on MyMason and the class website.

Reading Assignments
The reading assignments are shown in the class calendar in the rightmost column, first row in a week. They refer to sections in the Jiménez et.al or the Davies text that need to be read by the beginning of the week. They are also shown on each homework.

Homework:
There will be up to 12 homework assignments during the course of this class. These homeworks will be based on reading assignments and material covered in class and consist of several short questions. Each question will be graded on a pass/fail basis. Homework is due at the beginning of class on the due date. Late homeworks will not be accepted unless you have made arrangements, with me, in advance.

You are encouraged to work together on the homework assignments. However, you must submit your own work. Copying any or all of the homework solution of another student is considered plagiarism and is strictly prohibited. Cheating on a homework assignment will result in a zero (0) for that assignment.

Homework solutions must be formatted as follows:
1. The first page must contain your full name, the class number (ECE 447) and the homework number (Please do not include your G#).
2. All pages must be stapled together.
3. All solutions should be written neatly and clearly. I can only grade what I can read!
4. Each problem should be started on a new page (front and back are considered separate pages). (Multiple-choice problems may all be included on the same page).
5. While you can answer the questions in any order you please, your solution must be in problem order.

Labs:
This course features a senior lab component. Students in ECE 447 will be granted access to the ENGR Room 3208 computer lab to complete their projects. More information about the labs can be found in a separate lab syllabus.
Exams:
There will be two exams during the course. There will be NO make-up exams. (See Dr. Kaps for an exception at least 4 weeks before the exam.) Students who are more than 15 minutes late for an exam may not be admitted and will be assigned a grade of zero for the exam. All exams are closed book. You will be allowed to use the "MSP430 Reference Document" on all exams.

- Midterm Exam: Monday March 21st.
- Final Exam: Monday May 9th, 10:30am – 1:15pm.

Grading:
The final grade is based on a weighted sum of your performance in exams, homeworks, recitations and class participation:

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Midterm Lab Exam</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Credits:
This course has 3 lecture hours and 3 lab hours per week and a total of 4 credits. For EE students, this course counts as 1 technical elective and 1 advanced laboratory course.

Honor Code:
All rules of the GMU Honor Code system will be in effect. You must review the rules and be familiar with them.

You are encouraged to discuss your laboratory projects with other students and/or obtain the assistance of the TA. Nevertheless, you must write down your own solutions which represent your understanding of the material. Projects must be completed individually. No part of a project submission can be copied from another student of the class from this or previous years or any other source.

Duplicating someone else’s work such as but not limited to, hard-ware/software designs, diagrams, source code, project reports, and exam notes, is considered cheating. If you use material from other sources such as but not limited to the web, books, journals, data sheets, etc. you must reference the source. Honor code violations will be followed up with full force.

Classroom Etiquette:
Cellphones have to be put into silent mode. If you have an emergency need to answer a call please quietly leave the room BEFORE answering the call. Lectures may not be recorded without express written permission from the instructor.

Students with Disabilities
If you need special assistance, please inform the instructor within the first 3 weeks of classes so that we can work something out.

The Course Syllabus is Subject to Change