ECE 754
JANUARY 21, 2009

* PLEASE TAKE 3 HANDOUTS

* FILL OUT QUESTIONNAIRE
Two Problems of Interest

Set of Distributed Sensors

Spatial Filtering/Beamforming

Spatial Spectrum Estimation

$y(t, \theta)$

$P(\omega, \theta)$

Application Areas

- Radar
- Sonar
- Astronomy
- Seismology
- Communications

Power as Function of Angle

Ultrasound

Hearing Aids
TOPICAL COVERAGE

* Basics, Intro to Spatial Filtering
* Deterministic Spatial Filtering
* Space-time Random Processes
 Statistical Model
* Optimum Beamforming
 Known Statistics \rightarrow Performance Limits
* Adaptive Beamforming
 Estimate Statistics from Data
COORDINATE SYSTEM

θ = POLAR ANGLE

ϕ = AZIMUTHAL ANGLE

r_i = RADIAL DISTANCE TO SENSOR

ϕ₁ = POSITION VECTOR

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} r_i \sin \theta \cos \phi \\ r_i \sin \theta \sin \phi \\ r_i \cos \theta \end{bmatrix}$$
If we were doing time-domain processing, what set of basis functions would you use?

Complex exponentials: \(e^{j\omega t} \)

- \(e^{j\omega t} \) is eigenfunction of LTI system

\[
 e^{j\omega t} \xrightarrow{LTI} e^{j\omega t} H(\omega_0)
\]

- Solutions to linear constant coefficient differential equation

- \(e^{j\omega t} \) foundation of Fourier analysis
Basis Functions \rightarrow Plane Waves

Motivation: Plane Waves as solutions to wave eqn.

In free space, the scalar wave eqn.
is:

$$\nabla^2 f = \frac{1}{c^2} \frac{d^2 f}{dt^2}$$

$$\frac{d^2 f}{dx^2} + \frac{d^2 f}{dy^2} + \frac{d^2 f}{dz^2} = \frac{1}{c^2} \frac{d^2 f}{dt^2}$$

$\sqrt{\text{Acoustic}}$

$\sqrt{\text{Electromagnetic}}$

$c =$ propagation speed in medium assumed constant

\uparrow Partial differential eqn.
ASSUME A SEPARABLE SOLUTION:

\[f(x, y, z, t) = F_{xW}(x) \cdot F_{yW}(y) \cdot F_{zW}(z) \cdot F_{tW}(t) \]

FOR SIMPLICITY, ASSUME

\[f(x, y, z, t) = A e^{j\omega t - jk_x x - jk_y y - jk_z z} \]

\[k_x, k_y, k_z, \omega \text{ ARE CONSTANTS, } \omega \geq 0 \]

\[\frac{d^2 \{ \cdot \}}{dx^2} = -k_x^2 A e^{j\omega t - jk_x x - jk_y y - jk_z z} \]

SPATIAL \hspace{1cm} \uparrow \hspace{1cm} TEMPORAL
FREQUENCIES \hspace{1cm} FREQ.
\[-k_x^2 f(x, y, z, t) - k_y^2 f(x, y, z, t) - k_z^2 f(x, y, z, t) = \frac{-\omega^2}{c^2} f(x, y, z, t)\]

\[k_x^2 + k_y^2 + k_z^2 = \frac{\omega^2}{c^2}\]

When this constraint is satisfied, complex exponential signal satisfies wave Eqn.

\[j(\omega t - k_x x - k_y y - k_z z) \quad j(\omega t - k^T \varphi)\]

\[e^x \quad \text{and} \quad e^y \quad \text{and} \quad e^z\]

\[k = \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} \quad \varphi = \begin{bmatrix} x \\ y \\ z \end{bmatrix}\]

Wave number vector

Position vector
$c (\omega t - k^T \phi)$

MONOCHROMATIC PLANEWAVE

MONOCHROMATIC = REFERS TO TIME BEHAVIOR OF THE SIGNAL. IT'S TIME SIGNAL WITH ONLY 1 FREQUENCY.

PLANEWAVE: $e^{-j k^T \phi}$

k DEFINES DIRECTION OF PROPAGATION

WAVEFRONTS, LINES OF CONSTANT PHASE, PERPENDICULAR TO k.
Constraint: \[|k| = \sqrt{k_x^2 + k_y^2 + k_z^2} = \frac{\omega}{c} \]

(satisfies wave eqn.)

\[|k| = \frac{2\pi}{\lambda} = \frac{\omega}{c} \]

\(\lambda = \text{wave length} \)

\(\text{distance travelled in 1 temporal period} \)

\(\text{like spatial period} \)

Analogy: time domain

\[\Omega = \frac{2\pi}{T} \]
CAN WRITE k AS FOLLOWS

$$k = \frac{2\pi}{\lambda} (-u) = -\frac{\omega}{c} u$$

$u =$ UNIT LENGTH = $\begin{bmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{bmatrix}$

\rightarrow INTO ORIGIN

\Rightarrow IN DIRECTION SPECIFIED BY θ, ϕ

$K =$ SPATIAL FREQ. ; 3-D SPACE

REQUIRES 3-ELEMENT VECTOR

\Rightarrow WE'VE SHOWN THAT MONOCHROMATIC PLANEWAVES SATISFY WAVE EQN.
If we wanted to represent signal with more complicated temporal structure → use Fourier

Want pulse: \(f(t) = \int F(\omega) e^{j \omega t} d\omega \) Fourier synthesis

\[
[f(t) = \text{periodic, use Fourier series}...]
\]

Do same thing in spatial domain:

\[
f(t, \phi) = \iiint F(\omega, k) e^{j (\omega t - k^T \phi)} \, dw \, dk \, d\omega \, d\phi
\]

\[
F(\omega, k) = \iiint f(t, \phi) e^{-j (\omega t - k^T \phi)} \, dt \, d\phi
\]
SUMMARY: WHY USE PLANE WAVES

- SOLUTIONS TO WAVE EQUATION
- NATURAL BASIS SET TO USE FOR FOURIER ANALYSIS/SYNTHESIS

NOTE: PLANE WAVES NOT ALWAYS A GOOD APPROXIMANT (E.G. C NOT CONSTANT, NEARFIELD)

\[
\text{EX: } \left(\begin{array}{c}
(0) \\
(0) \\
(0) \\
\end{array} \right) \rightarrow \left(\begin{array}{c}
\text{Sensors} \\
\text{small aperture} \\
\text{compared to range} \\
\end{array} \right)
\]

\[
\text{NEARFIELD: PLANEWAVES NOT GREAT}
\]

\[
\text{FARFIELD: WAVEFRONTS ALMOST PLANAR ACROSS APERTURE}
\]
Think about spatial filtering: 2 element array

\[\phi_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \phi_1 = \begin{bmatrix} 0 \\ 0 \\ d \end{bmatrix} \]

Suppose we have a planewave incident on this array \(\theta = \theta_0, \phi = \pi/2 \)

Find difference in time of arrival between \(\phi_0 \) and \(\phi_1 \)

Remember \(c = \text{prop speed} \)
What is time difference?

\[t_1 = \frac{d \cos \phi}{c} \]

Which sensor receives signal first?

Sensor 1

Does time delay change if azimuthal angle \(\phi \) changes?

Delay doesn't depend on \(\phi \)
Suppose that each sensor is corrupted by independent noise, e.g., flow noise in a sonar system model as temporally white and spatially independent.

How would you process these sensor data?

We know θ_0.

\Rightarrow Time align and average 2 signals.

Proposed scheme:

Sensor 0: $f(t, \theta_0)$

Sensor 1: $f(t, \phi_1) = f(t + T_1, \phi_0)$

Diagram:

1. Delay by $T_0 = 0$
2. Delay by $+T_1$
3. Average of 2 signals
This is the delay and sum beamformer. (Easily generalizes to \(n \) sensors)

To generalize, we need time delay to arbitrary sensor:

nth sensor at \(\mathbf{p}_n \)

Planewave coming from direction

\[
\mathbf{a} = -\mathbf{u}
\]

Unit vectors

\[
\mathbf{r}_n = \frac{\mathbf{a}^T \mathbf{p}_n}{c} = -\frac{\mathbf{u}^T \mathbf{p}_n}{c}
\]

\(\mathbf{a}^T \mathbf{p}_n \) = length of projection of \(\mathbf{p}_n \) onto \(\mathbf{a} \)
CHECK 1-d (2 ELEMENT CASE)

\[p_1 = \begin{bmatrix} 0 \\ 0 \\ d \end{bmatrix} \quad a = -u = \begin{bmatrix} -\sin \Theta \cos \Phi \\ -\sin \Theta \sin \Phi \\ -\cos \Theta \end{bmatrix} \]

\[\frac{a^T p_1}{c} = \frac{1}{c} (-d \cos \Theta) \quad \text{NEG. DELAY} \]
General plane-wave model for received signal at \(n \) sensors

The signal we observe at origin (if sensor there)

\[
f(t) \quad \leftrightarrow \quad F(w) = \text{Fourier X-form of time signal}
\]

Time signal at \(n \)th sensor

\[
f_n(t) = f(t - \tau_n)
\]

\[
F(w) e^{-jwT \tau_n} = F_n(w)
\]

\[
= F(w) e^{-j \pi T \beta n} = F(w) e^{-j \omega \left(\frac{-\pi \beta n}{c} \right)}
\]
Write Fourier X-form of all received signals in vector.

\[F(\omega) = \begin{bmatrix} F_0(\omega) \\ F_1(\omega) \\ \vdots \\ F_{N-1}(\omega) \end{bmatrix} = F(\omega) \mathbf{v}_k(k) = F(\omega) \mathbf{v}_k(k) \]

\[e^{-j k^T \mathbf{p}_0} \\ e^{-j k^T \mathbf{p}_1} \\ \vdots \\ e^{-j k^T \mathbf{p}_{N-1}} \]

\[\mathbf{v}_k(k) = \text{array manifold vector} \]

\[= \text{replica. vector} \]

Contains all spatial info.
NARROWBAND SIGNAL MODEL.

In real life we get this as follows:

\[f_0(t) \xrightarrow{\text{BP filter at } w} F_0(w) \]

\[f_1(t) \xrightarrow{\text{BP filter at } w} F_1(w) \]

\[\vdots \]

\[f_{N-1}(t) \xrightarrow{\text{BP filter at } w} F_{N-1}(w) \]

Ideally: Bandpass filter is infinitely narrow (passes 1 freq.)

In practice: Look at 1 bin of FFT
System implements NB spatial filtering.

When we do time-domain filtering, how we predict performance?

\[\text{Freq. response} = H(w) \]

\[e^{j\omega t} \xrightarrow{\text{LTI}} H(w) e^{j\omega t} \]
Spatial Filtering:

\[v_k(k) \rightarrow \text{NB Spatial Filter (Linear)} \rightarrow I(\omega, k) \]

Arbitrary Planewave Vector

Frequency-Wavenumber Response

Complex Scalar

For our spatial filter:

\[I(\omega, k) = w^H v_k(k) = \text{Complex Gain} \]

Response to arbitrary planewave

Complex gain given to a planewave of direction \(k \) and NB freq. \(\omega \)
If wave eqn is satisfied, k can't be arbitrary. It is constrained $|k| = \frac{\omega}{c} = \frac{2\pi}{\lambda}$.

Possible k's: $k = \frac{-2\pi}{\lambda} \ u(\theta, \phi)$

$0 \leq \theta \leq \pi$

$0 \leq \phi \leq 2\pi$

Beam pattern is the freq-wave number response evaluated only at these possible angles:

$B(\omega; \theta, \phi) = |Y(\omega, k)|$

Spatial freq. resp. as fn of angle $k = \frac{-2\pi}{\lambda} u(\theta, \phi)$
Example: Linear array w/ equal spacing on z-axis

\[p_{zn} = (n - (N - 1)d) \quad n = 0, \ldots, N-1 \]

\[p_{xn} = p_{yn} = 0 \]

Array centered on origin only depends on \(k_z \)

Want: \(\mathbf{v}_k(k) = \mathbf{v}_k(k_z) = \begin{bmatrix} e^{j\frac{(N-1)}{2}k_zd} \\ \vdots \\ e^{-j\frac{(N-1)}{2}k_zd} \end{bmatrix} \]

\[k_z = -\frac{2\pi}{\lambda} \cos \theta \]

\(u_z = \text{Directional Cosines} \)
\[I(w, k) = w^H v_k(k) = w^H v_k(k_2) \]
\[= \sum_{n=0}^{N-1} w_n e^{-j(n-(\frac{N-1}{2})) k_2 d} \]
\[= e^{j(\frac{N-1}{2}) k_2 d} \sum_{n=0}^{N-1} w_n e^{-j n k_2 d} \]
\[\text{Phase term} \]

Define: \(\Psi = -k_2 d \)

\[I(w, \Psi) = e^{-j(\frac{N-1}{2}) \Psi} \sum_{n=0}^{N-1} w_n e^{-j n \Psi} \]

DTFT of \(w_n \)
Assume $w_n = \frac{1}{N}$ \hspace{1cm} \text{uniform weighting}

$$I(\omega, \Psi) = e^{-j \left(\frac{N-1}{2} \right) \Psi} \left(\sum_{n=0}^{N-1} \frac{1}{N} e^{-jn\Psi} \right)^N$$

\[\overset{\text{geometric series}}{=} \frac{1}{N} \sin \left(\frac{\Psi}{2} \right) \frac{1}{\sin \left(\frac{\Psi}{2} \right)}
\]

\[\overset{\text{DTFT}}{\frac{1}{N}} \begin{bmatrix} 1 & \ldots & 1 \end{bmatrix}
\]

$$I(\omega, k_2) = \frac{1}{N} \frac{\sin \left(\frac{N k_2 d}{2} \right)}{\sin \left(\frac{k_2 d}{2} \right)}$$
Sketch:

\[|N \psi(\psi)| \]

\[N = 10 \]

Zero crossings:

\[\sin \left(\frac{N}{2} \psi \right) = 0 \]

\[\frac{N}{2} \psi = \ell \pi \quad \text{multiple of } \pi \]

\[\psi = \frac{2\pi \ell}{N} \]

Use l'Hôpital's to find HT at \(\psi = 0 \)

Periodic: repeats every

\[\frac{\psi}{2} = \pi \ell \]

\[\psi = 2\pi \ell \]
Sample in Time: Copies of Spectrum

Every $\Delta = \frac{2\pi}{T}$ \hspace{1cm} $T =$ Sample Period

Time Domain Problem: \hspace{1cm} $\omega = \Delta T$ \hspace{1cm} Normalized

\uparrow \hspace{1cm} \uparrow

ΔT \hspace{1cm} $C T$

Freq. \hspace{1cm} Freq.

So then ΔT Spectrum Repeats Every 2π

Sample in Space:

k_z-Space: Spectrum Repeats Every $\frac{2\pi}{d}$

$\Psi = -k_z d$ \hspace{1cm} Normalized Freq.

So $\Psi(\Psi)$ Repeats Every 2π
\[k_2 = \pm \frac{2\pi}{\lambda} \cos \theta \]

MIN/MAX VALUES OF \(k_2 \)

\[-\frac{2\pi}{\lambda} \leq k_2 \leq \frac{2\pi}{\lambda} \]

VISIBLE REGION

OF \(I(\omega, k_2) \)

MIN/MAX VALUES OF \(\psi \)

\[-\frac{2\pi d}{\lambda} \leq \psi \leq \frac{2\pi d}{\lambda} \]