PLEASE TAKE 3 HANDOUTS

FILL OUT QUESTIONNAIRE

TOPICAL COVERAGE

- Basics, intro to spatial filtering
- Deterministic spatial filtering
- Space-time random processes
- Statistical model
- Optimum beamforming
- Known statistics → performance limits
- Adaptive beamforming
- Estimate statistics from data

COORDINATE SYSTEM

\[r = \sqrt{x^2 + y^2} \]

\[\theta = \arctan \left(\frac{y}{x} \right) \]

\[\phi = \text{azimuthal angle} \]

TWO PROBLEMS OF INTEREST

SPATIAL FILTERING/BEAMFORMING

APPLICATION AREAS

- Radar
- Sonar
- Ultrasound
- Seismology
- Hearing aids
- Communications

IF WE WERE DOING TIME-DOMAIN PROCESSING

WHAT SET OF BASIS FUNCTIONS WOULD YOU USE?

- Complex exponentials: \(e^{jut} \)
 - \(e^{jut} \) is eigenfunction of LTI system
 - \(H(w_0) \) is freq resp
 - Solutions to linear constant coefficient complex Diff Eqn.
 - \(c \) = foundation of Fourier analysis

ASSUME A SEPARABLE SOLUTION:

\[f(x, y, z, t) = F(x) \cdot F(y) \cdot F(z) \cdot F(t) \]

For simplicity, assume

\[f(x, y, z, t) = A e^{jut - jk_x x - jk_y y - jk_z z} \]

\(k_x, k_y, k_z, w \) are constants, \(w \geq 0 \)

FOR SPATIAL FREQUENCIES ONLY

\[\frac{\partial^2}{\partial x^2} \left(r \right) = -k^2 A e^{jut - jk_x x - jk_y y - jk_z z} \]

SPACE-TIME RANDOM PROCESSES

STATISTICAL MODEL

OPTIMUM BEAMFORMING

KNOWN STATISTICS → PERFORMANCE LIMITS

ADAPTIVE BEAMFORMING

ESTIMATE STATISTICS FROM DATA

BASIS FUNCTIONS → PLANEWAVES

MOTIVATION: Planewaves as solutions to wave Eqn.

In free space, the scalar wave Eqn is:

\[\nabla^2 f = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} \]

\[\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} \]

\(c \) = Acoustic or Electromagnetic

\(c \) = Propagation speed in medium assumed constant

PARTIAL DIFFERENTIAL EQUATION

MONOCHROMATIC PLANEWAVE

\[j (ut - \mathbf{k} \cdot \mathbf{r}) \]

Monochromatic refers to time behavior of the signal, it's time signal with only 1 frequency.

\[\mathbf{p} \]

\(\mathbf{k} \) = direction of propagation

Wavefronts, lines of constant phase, perpendicular to \(\mathbf{k} \)
Constraint: \[|k| = \sqrt{k_x^2 + k_y^2 + k_z^2} = \frac{\omega}{c}\] (satisfies wave eqn.)

\[|k| = \frac{2\pi}{\lambda} = \frac{\omega}{c}\]

\(\lambda = \text{wave length} \quad \text{distance travelled in 1 temporal period}
\]

Analog: time domain

\[\Delta = \frac{2\pi}{T}\]

Summary: why use plane waves

- solve to wave eqn.
- natural basis set to use for Fourier analysis/synthesis

Note: plane waves not always a good approx (e.g. \(c\) not constant, nearfield)

EX: \(\frac{1}{\pi r^2}\) small aperture compared to range

NAR: field: waves fall off in near field: plane waves not great across aperture

Can write \(k\) as follows

\[k = \frac{2\pi}{\lambda} (-1)^m = -\frac{\omega}{c} \mathbf{a}\]

\(\mathbf{u} = \text{unit length} = \begin{bmatrix} \sin\theta \cos\phi \\ \sin\theta \sin\phi \\ \cos\theta \end{bmatrix}\)

\(\mathbf{u} = \text{unit vector in direction specified by } \phi, \theta\)

K = spatial freq; \(3-D\) space requires \(2\)-element vector

\(\Rightarrow\) we've shown that monochromatic plane waves satisfy wave eqn.

Think about spatial filtering: 2 element array

Suppose we have a plane wave incident on this array

Remember \(c = \text{prop. speed}\)

What is time difference?

\[t_1 = \frac{d \cos \theta_0}{c}\]

Which sensor receives signal first?

Sensor 1

Does time delay change if azimuthal angle \(\phi\) changes?

Delay doesn't depend on \(\phi\)

This is the delay and can be beamformed. (easily generalizes to \(N\) sensors)

To generalize, we need time delay to arbitrary sensor:

Nth sensor at \(\phi_n\)

Plane wave coming from direction

\[\mathbf{u} = \begin{bmatrix} \sin\theta \cos\phi_n \\ \sin\theta \sin\phi_n \\ \cos\theta_n \end{bmatrix}\]

\[\mathbf{u} = \text{unit vectors}\]

\(T_n = \frac{\mathbf{u}^T \mathbf{p}_1}{c} = - \frac{\mathbf{u}_0^T \mathbf{p}_1}{c}\)

\(\Rightarrow\) length of protection of \(\phi_n\) onto \(\phi_0\)

If we wanted to represent signal \(u\): more complicated temporal structure

\(\Rightarrow\) use Fourier

Want pulse:

\[f(t) = \int f(u) e^{-jut} du\]

Fourier synthesis

\[f(u) = \text{periodic}, \text{ use Fourier series...}\]

Do same thing in spatial domain:

\[f(t, \phi) = \int \int f(u, \mathbf{p}) e^{-j(ut - \mathbf{u}^T \mathbf{p})} du d\mathbf{p}\]

\[f(u, \mathbf{p}) = \int f(t, \phi) e^{j(ut - \mathbf{u}^T \mathbf{p})} dt d\phi\]
General plane-wave model for received signal at N sensors

The signal we observe at origin if sensor there:

$$ F(t) \leftrightarrow F(w) = \text{Fourier X-form of time signal} $$

Time signal at nth sensor:

$$ f_n(t) = f(t - \tau_n) = F(w) e^{-j\omega \tau_n} = F(w) e^{-j\omega \tau_n} \left(\frac{e^{-j\omega \tau_n}}{e^{-j\omega \tau_n}} \right) $$

Linear processor:

- Complex scalar weights $X = \text{Conjugate}$
- Hermitian transpose $H = \text{Hermitian transpose}$

System implements NB spatial filtering.

Spatial filtering:

- $X_K(\omega) = \text{NB spatial filter (linear) frequency-wavenumber response}$
- Complex scalar vector

For our spatial filter:

$$ X_K(\omega) = W_H Y_K(\omega) $$

Example: Linear array w/ equal spacing on z-axis

Array centered on origin:

$$ k_x = \frac{\omega}{c} \cos \theta, \quad k_y = 0, \quad k_z = \frac{\omega}{c} \sin \theta $$

$$ X_K(\omega) = \sum_{n=0}^{N-1} w_n e^{-j(\omega - \omega_n)k_0d} $$

Define: $\Psi = -k_0d$

$$ X(\omega, k) = e^{-j\Psi} \sum_{n=0}^{N-1} w_n e^{-j\omega_kd} $$

Assume $w_n = \frac{1}{N}$ uniform weighting:

$$ X(\omega, k) = \sum_{n=0}^{N-1} \frac{1}{N} e^{-j\omega_kd} $$

$$ X(\omega, k) = \frac{1}{N} \sum_{n=0}^{N-1} e^{-j\omega_kd} $$

$$ X(\omega, k) = \frac{1}{N} \sin \left(\frac{\omega_kd}{2} \right) \sin \left(\frac{k\omega_d}{2} \right) $$
Sample in time: copies of spectrum every \(\Delta \tau = \frac{2\pi}{T} \), \(T = \text{sampling period} \)

Time domain problem: \(\omega = N T \), normalized freq.

So the DT spectrum repeats every \(2\pi \)

Sample in space:

- \(k_x \)-space: spectrum repeats every \(\frac{2\pi}{d} \)
- \(\Psi = -k_x d \) \(\Rightarrow \) normalized freq.

So \(\mathcal{I}(\Psi) \) repeats every \(2\pi \)

\[k_x = -\frac{2\pi}{\lambda} \cos \Theta \]

Min/max values of \(k_x \):

\(-\frac{2\pi}{\lambda} \leq k_x \leq \frac{2\pi}{\lambda} \) (visible region of \(I(x,k_x) \))

Min/max values of \(\Psi \):

\(-\frac{2\pi d}{\lambda} \leq \Psi \leq \frac{2\pi d}{\lambda} \)