Chapter VI

Coping with Interconnect
Impact of Interconnect Parasitics

• Reduce Robustness

• Affect Performance
 • Increase delay
 • Increase power dissipation

Classes of Parasitics

• Capacitive
• Resistive
• Inductive
Dealing with Capacitance
Capacitive Cross Talk

\[\Delta V_Y = \frac{C_{XY}}{C_Y + C_{XY}} \Delta V_X \]
Capacitive Cross Talk Dynamic Node

\[V_{DD} \]

CLK

\[C_{XY} \]

Y

CLK

\[C_Y \]

X

2.5 V

0 V

\[(C_{xy} \sim 0.5 \text{ fF parasitic capacitance}) \]

3 x 1 \(\mu \text{m} \) overlap: 0.19 V disturbance
Capacitive Cross Talk Driven Node

Keep time-constant smaller than rise time

\[\tau_{XY} = R_Y(C_{XY} + C_Y) \]
Dealing with Capacitive Cross Talk

- Avoid floating nodes
- Protect sensitive nodes
- Make rise and fall times as large as possible
- Differential signaling
- Do not run wires together for a long distance
- Use shielding wires
- Use shielding layers
Shielding

Shielding wire

GND

Substrate (GND)

V_{DD}

Shielding layer

GMU, ECE 680 Physical VLSI Design
Cross Talk and Performance

- When neighboring lines switch in opposite direction of victim line, delay increases

DELAY DEPENDENT UPON ACTIVITY IN NEIGHBORING WIRES

Miller Effect

- Both terminals of capacitor are switched in opposite directions
 \(0 \rightarrow V_{dd}, \quad V_{dd} \rightarrow 0\)

- Effective voltage is doubled and additional charge is needed
 \(\text{from } Q=CV\)
Impact of Cross Talk on Delay

<table>
<thead>
<tr>
<th>bit $k - 1$</th>
<th>bit k</th>
<th>bit $k + 1$</th>
<th>Delay factor g</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>—</td>
<td>$1 + r$</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 2r$</td>
</tr>
<tr>
<td>—</td>
<td>↑</td>
<td>—</td>
<td>$1 + 2r$</td>
</tr>
<tr>
<td>—</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 3r$</td>
</tr>
<tr>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 4r$</td>
</tr>
</tbody>
</table>

r is ratio between capacitance to GND and to neighbor
Structured Predictable Interconnect

Example: Dense Wire Fabric ([Sunil Kathri])

Trade-off:
- Cross-coupling capacitance 40x lower, 2% delay variation
- Increase in area and overall capacitance

Also: FPGAs, VPGAs
Interconnect Projections
Low-k dielectrics

• Both delay and power are reduced by dropping interconnect capacitance

• Types of low-k materials include: inorganic (SiO₂), organic (Polyimides) and aerogels (ultra low-k)

• The numbers below are on the conservative side of the NRTS roadmap

<table>
<thead>
<tr>
<th>Generation</th>
<th>0.25 µm</th>
<th>0.18 µm</th>
<th>0.13 µm</th>
<th>0.1 µm</th>
<th>0.07 µm</th>
<th>0.05 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant</td>
<td>3.3</td>
<td>2.7</td>
<td>2.3</td>
<td>2.0</td>
<td>1.8</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Encoding Data Avoids Worst-Case Conditions

![Diagram of encoding and decoding process]

GMU, ECE 680 Physical VLSI Design
Driving Large Capacitances

\[t_p = \frac{C_L V_{\text{swing}}}{I_{av}} \]

- Transistor Sizing
- Cascaded Buffers
Using Cascaded Buffers

0.25 μm process
Cin = 2.5 fF
tp0 = 30 ps

F = CL/Cin = 8000
fopt = 3.6 N = 7
tp = 0.76 ns

(See Chapter 5)
Output Driver Design

Trade off Performance for Area and Energy

Given t_{pmax} find N and f

- **Area**
 \[A_{\text{driver}} = (1 + f + f^2 + ... + f^{N-1}) A_{\text{min}} = \frac{f^N - 1}{f - 1} A_{\text{min}} = \frac{F - 1}{f - 1} A_{\text{min}} \]

- **Energy**
 \[E_{\text{driver}} = (1 + f + f^2 + ... + f^{N-1}) C_i V_{DD}^2 = \frac{F - 1}{f - 1} C_i V_{DD}^2 \approx \frac{C_L}{f} V_{DD}^2 \]
Delay as a Function of F and N

Number of buffer stages N

GMU, ECE 680 Physical VLSI Design
Output Driver Design

0.25 μm process, $C_L = 20$ pF

Transistor Sizes for optimally-sized cascaded buffer $t_p = 0.76$ ns

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_n (μm)</td>
<td>0.375</td>
<td>1.35</td>
<td>4.86</td>
<td>17.5</td>
<td>63</td>
<td>226.8</td>
<td>816.5</td>
</tr>
<tr>
<td>W_p (μm)</td>
<td>0.71</td>
<td>2.56</td>
<td>9.2</td>
<td>33.1</td>
<td>119.2</td>
<td>429.3</td>
<td>1545.5</td>
</tr>
</tbody>
</table>

Transistor Sizes of redesigned cascaded buffer $t_p = 1.8$ ns

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_n (μm)</td>
<td>0.375</td>
<td>7.5</td>
<td>150</td>
</tr>
<tr>
<td>W_p (μm)</td>
<td>0.71</td>
<td>14.4</td>
<td>284</td>
</tr>
</tbody>
</table>
How to Design Large Transistors

- Multiple Contacts
 - Reduces diffusion capacitance
 - Reduces gate resistance

small transistors in parallel
Bonding Pad Design

GMU, ECE 680 Physical VLSI Design
ESD Protection

• When a chip is connected to a board, there is unknown (potentially large) static voltage difference
• Equalizing potentials requires (large) charge flow through the pads
• Diodes sink this charge into the substrate – need guard rings to pick it up.
ESD Protection

Diode
Chip Packaging

- Bond wires (~25μm) are used to connect the package to the chip
- Pads are arranged in a frame around the chip
- Pads are relatively large (~100μm in 0.25μm technology), with large pitch (100μm)
- Many chips areas are ‘pad limited’
Pad Frame

Layout

Die Photo
Chip Packaging

• An alternative is ‘flip-chip’:
 – Pads are distributed around the chip
 – The soldering balls are placed on pads
 – The chip is ‘flipped’ onto the package
 – Can have many more pads
Tristate Buffers

\[\text{Out} = \text{In}.\overline{\text{En}} + Z.\overline{\text{En}} \]

Increased output drive
Reducing the swing potentially yields linear reduction in delay.
Also results in reduction in power dissipation.
Delay penalty is paid by the receiver.
Requires use of “sense amplifier” to restore signal level.
Frequently designed differentially (e.g. LVDS).

\[t_{PHL} = \frac{C_L \cdot V_{swing}/2}{I_{av}} \]
Single-Ended Static Driver and Receiver

driver

receiver
Dynamic Reduced Swing Network

\[V(\text{Volt}) \]

GMU, ECE 680 Physical VLSI Design
Dealing with Resistance
Impact of Resistance

• We have already learned how to drive RC interconnect

• Impact of resistance is commonly seen in power supply distribution:
 – IR drop
 – Voltage variations

• Power supply is distributed to minimize the IR drop and the change in current due to switching of gates
RI Introduced Noise
Power Dissipation Trends

- Power consumption is increasing
 - Better cooling technology needed
- Supply current is increasing faster!
- On-chip signal integrity will be a major issue
- Power and current distribution are critical
- Opportunities to slow power growth
 - Accelerate Vdd scaling
 - Low κ dielectrics & thinner (Cu) interconnect
 - SOI circuit innovations
 - Clock system design
 - micro-architecture

ASP DAC 2000
Resistance and the Power Distribution Problem

Before

- Requires fast and accurate peak current prediction
- Heavily influenced by packaging technology

After

Source: Cadence
Power Distribution

- Low-level distribution is in Metal 1
- Power has to be ‘strapped’ in higher layers of metal.
- The spacing is set by IR drop, electromigration, inductive effects
- Always use multiple contacts on straps
Power and Ground Distribution

(a) Finger-shaped network

(b) Network with multiple supply pins
3 Metal Layer Approach (EV4)

3rd “coarse and thick” metal layer added to the technology for EV4 design
Power supplied from two sides of the die via 3rd metal layer
2nd metal layer used to form power grid
90% of 3rd metal layer used for power/clock routing
4 Metal Layers Approach (EV5)

4th “coarse and thick” metal layer added to the technology for EV5 design

Power supplied from four sides of the die

Grid strapping done all in coarse metal

90% of 3rd and 4th metals used for power/clock routing

Courtesy Compaq
6 Metal Layer Approach – EV6

2 reference plane metal layers added to the technology for EV6 design
Solid planes dedicated to Vdd/Vss
Significantly lowers resistance of grid
Lowers on-chip inductance

Courtesy Compaq
Electromigration (1)

Limits dc-current to 1 mA/μm
Electromigration (2)
Resistivity and Performance

The distributed rc-line

Diffused signal propagation

Delay $\sim L^2$
The Global Wire Problem

\[T_d = 0.377R_w C_w + 0.693\left(R_d C_{out} + R_d C_w + R_w C_{out} \right) \]

Challenges

- No further improvements to be expected after the introduction of Copper (superconducting, optical?)
- Design solutions
 - Use of fat wires
 - Insert repeaters — but might become prohibitive (power, area)
 - Efficient chip floorplanning
- Towards “communication-based” design
 - How to deal with latency?
 - Is synchronicity an absolute necessity?
Interconnect Projections: Copper

- Copper is planned in full sub-0.25 μm process flows and large-scale designs (IBM, Motorola, IEDM97)
- With cladding and other effects, Cu ~ 2.2 μΩ·cm vs. 3.5 for Al(Cu) ⇒ 40% reduction in resistance
- Electromigration improvement; 100X longer lifetime (IBM, IEDM97)
 - Electromigration is a limiting factor beyond 0.18 μm if Al is used (HP, IEDM95)
Interconnect:

of Wiring Layers

of metal layers is steadily increasing due to:

- Increasing die size and device count: we need more wires and longer wires to connect everything
- Rising need for a hierarchical wiring network; local wires with high density and global wires with low RC
Diagonal Wiring

- 20% Interconnect length reduction
- Clock speed
 - Signal integrity
 - Power integrity
- 15% Smaller chips
 - plus 30% via reduction

Courtesy Cadence X initiative
Using Bypasses

Driving a word line from both sides

Using a metal bypass
Reducing RC-delay

\[M = L \frac{0.38rc}{t_{pbuf}} \] (chapter 5)

GMU, ECE 680 Physical VLSI Design 48
Repeater Insertion (Revisited)

Taking the repeater loading into account

\[m_{opt} = L \sqrt[\frac{0.38rc}{0.69R_d C_d (\gamma + 1)}} = \sqrt[\frac{t_{wire(unbuffered)}}{t_p^1}] \]

\[s_{opt} = \sqrt[\frac{R_d C}{r C_d}] \]

For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The delay of these wire segments is independent of the routing layer!

\[L_{crit} = \frac{L}{m_{opt}} = \sqrt[\frac{t_{p^1}}{0.38rc}] \quad t_{p, crit} = \frac{t_{\hat{p}, min}}{m_{opt}} = 2 \left(1 + \sqrt[\frac{0.69}{0.38(1 + \gamma)}}\right) t_{p^1} \]
INTERCONNECT

Dealing with Inductance
Impact of inductance on supply voltages:
- Change in current induces a change in voltage
- Longer supply lines have larger L
L di/dt: Simulation

Input rise/fall time: 50 psec

Input rise/fall time: 800 psec

GMU, ECE 680 Physical VLSI Design
Dealing with Ldi/dt

- Separate power pins for I/O pads and chip core.
- Multiple power and ground pins.
- Careful selection of the positions of the power and ground pins on the package.
- Increase the rise and fall times of the off-chip signals to the maximum extent allowable.
- Schedule current-consuming transitions.
- Use advanced packaging technologies.
- Add decoupling capacitances on the board.
- Add decoupling capacitances on the chip.
Choosing the Right Pin

- Bonding wire
- Chip
- Mounting cavity
- Lead frame
- Pin
Decoupling Capacitors

Decoupling capacitors are added:
- on the board (right under the supply pins)
- on the chip (under the supply straps, near large buffers)
De-coupling Capacitor Ratios

• EV4
 – total effective switching capacitance = 12.5nF
 – 128nF of de-coupling capacitance
 – de-coupling/switching capacitance ~ 10x

• EV5
 – 13.9nF of switching capacitance
 – 160nF of de-coupling capacitance

• EV6
 – 34nF of effective switching capacitance
 – 320nF of de-coupling capacitance -- not enough!

Source: B. Herrick (Compaq)
EV6 De-coupling Capacitance

Design for $\Delta I_{dd} = 25 \text{ A} @ V_{dd} = 2.2 \text{ V}, f = 600 \text{ MHz}$

- 0.32-µF of on-chip de-coupling capacitance was added
 - Under major busses and around major gridded clock drivers
 - Occupies 15-20% of die area
- 1-µF 2-cm² Wirebond Attached Chip Capacitor (WACC) significantly increases “Near-Chip” de-coupling
 - 160 Vdd/Vss bondwire pairs on the WACC minimize inductance

Source: B. Herrick (Compaq)
EV6 WACC

389 Signal - 198 VDD/VSS Pins

389 Signal Bondwires
395 VDD/VSS Bondwires
320 VDD/VSS Bondwires

WACC
Microprocessor

Heat Slug

587 IPGA

Source: B. Herrick (Compaq)
The Transmission Line

\[\frac{2}{\partial x^2} v = r c \frac{\partial v}{\partial t} + l c \frac{\partial^2 v}{\partial t^2} \]

The Wave Equation
Design Rules of Thumb

• Transmission line effects should be considered when the rise or fall time of the input signal \((t_r, t_f)\) is smaller than the time-of-flight of the transmission line \((t_{flight})\).

\[
t_r (t_f) \ll 2.5 t_{flight}
\]

• Transmission line effects should only be considered when the total resistance of the wire is limited:

\[
R < 5 Z_0
\]

• The transmission line is considered lossless when the total resistance is substantially smaller than the characteristic impedance,

\[
R < Z_0/2
\]
Should we be worried?

- Transmission line effects cause overshooting and non-monotonic behavior

Clock signals in 400 MHz IBM Microprocessor (measured using e-beam prober) [Restle98]
Matched Termination

Series Source Termination

Parallel Destination Termination
Segmented Matched Line Driver
Parallel Termination—
Transistors as Resistors

Normalization of Resistances (PMOS with -1V bias)

PMOS only
NMOS only
NMOS-PMOS
V_R (Volt)
Normalized Resistance

0 0.5 1 1.5 2 2.5

GMU, ECE 680 Physical VLSI Design
Output Driver with Varying Terminations

Initial design

Revised design with matched driver impedance

GMU, ECE 680 Physical VLSI Design
The “Network-on-a-Chip”
CMOS Schmitt Trigger (2)